{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "name": "sesion_06_regresion_multivariada_normal_equation", "provenance": [] }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" } }, "cells": [ { "cell_type": "markdown", "source": [ "\n", "\"Open" ], "metadata": { "id": "RGsdu3aXY5O_" } }, { "cell_type": "markdown", "source": [ "# Regresion multivariada ecuacion normal, repaso breve.\n", "\n", "Supongamos que tenemos un conjunto de caracteristicas $X = X_1,X_2...X_j...X_n$ para realizar una predicción $y$ con valores esperados $\\hat{y}$. \n", "\n", "Cada X, puede ser escrito como:\n", " $X_1 = x_1^{(1)},x_1^{(2)}, x_1^{(3)}...x_1^{(m)}$, \n", "\n", " $X_2 = x_2^{(1)},x_2^{(2)}, x_2^{(3)}...x_2^{(m)}$, \n", " \n", " .\n", " \n", " .\n", " \n", " .\n", " \n", " $X_n = x_n^{(1)},x_n^{(2)}, x_n^{(3)}...x_n^{(m)}$. \n", " \n", "\n", "Siendo n el número de caracteristicas y m el número de datos de datos, \n", "$\\hat{y} = \\hat{y}_1^{(1)}, \\hat{y}_1^{(2)}...\\hat{y}_1^{(m)} $, el conjunto de datos etiquetados y $y = y_1^{(1)}, y_1^{(2)}...y_1^{(m)} $ los valores predichos por un modelo\n", "\n", "\n", "\n", "\n", "Lo anterior puede ser resumido como:\n", "\n", "\n", "\n", "|Training|$\\hat{y}$ | X_1 | X_2 | . | .|. |. | X_n|\n", "|--------|-------|------|------|-----|--|--|--|----|\n", "|1|$\\hat{y}_1^{1}$ | $x_1^{1}$|$x_2^{1}$| . | .|. |. | $x_n^{1}$|\n", "|2|$\\hat{y}_1^{2}$ | $x_1^{2}$|$x_2^{2}$| . | .|. |. | $x_n^{2}$|\n", "|.|. | . |.| . | .|. |. | |\n", "|.|. | . |.| . | .|. |. | |\n", "|.|. | . |.| . | .|. |. | |\n", "|m|$\\hat{y}_1^{m}$ | $x_1^{m}$ |$x_2^{m}$| . | .|. |. | $x_n^{m}$|\n", "\n", "\n", "y el el modelo puede ser ajustado como sigue: \n", "\n", "Para un solo conjunto de datos de entrenamiento tentemos que:\n", "\n", "$y = h(\\theta_0,\\theta_1,\\theta_2,...,\\theta_n ) = \\theta_0 + \\theta_1 x_1+\\theta_2 x_2 + \\theta_3 x_3 +...+ \\theta_n x_n $.\n", "\n", "\\begin{equation}\n", "h_{\\Theta}(x) = [\\theta_0,\\theta_1,...,\\theta_n ]\\begin{bmatrix}\n", "1^{(1)}\\\\\n", "x_1^{(1)}\\\\\n", "x_2^{(1)}\\\\\n", ".\\\\\n", ".\\\\\n", ".\\\\\n", "x_n^{(1)}\\\\\n", "\\end{bmatrix} = \\Theta^T X^{(1)}\n", "\\end{equation}\n", "\n", "\n", "\n", "Para todo el conjunto de datos, tenemos que:\n", "\n", "Sea $\\Theta^T = [\\theta_0,\\theta_1,\\theta_2,...,\\theta_n]$ una matrix $1 \\times (n+1)$ y \n", "\n", "\n", "\\begin{equation}\n", "X =\n", "\\begin{bmatrix}\n", "1& 1 & 1 & .&.&.&1\\\\\n", "x_1^{(1)}&x_1^{(2)} & x_1^{(3)} & .&.&.&x_1^{(m)}\\\\\n", ".&. & . &.&.&.& .\\\\\n", ".&. & . & .&.&.&.\\\\\n", ".&. & . & .&.&.&.\\\\\n", "x_n^{(1)}&x_n^{(2)} & x^{(3)} & .&.&.&x_n^{(m)}\\\\\n", "\\end{bmatrix}_{(n+1) \\times m}\n", "\\end{equation}\n", "\n", "\n", "\n", "\n", "luego $h = \\Theta^{T} X $ con dimension $1\\times m$\n", "\n", "\n", "\n", "\n", "La anterior ecuación, es un hiperplano en $\\mathbb{R}^n$. Notese que en caso de tener una sola característica, la ecuación puede ser análizada según lo visto en la sesión de regresion lineal.\n", "\n", "\n", "Para la optimización, vamos a definir la función de coste **$J(\\theta_1,\\theta_2,\\theta_3, ...,\\theta_n )$** , como la función asociada a la minima distancia entre dos puntos, según la metrica euclidiana. \n", "\n", "- Metrica Eculidiana\n", "\n", "\\begin{equation}\n", "J(\\theta_1,\\theta_2,\\theta_3, ...,\\theta_n )=\\frac{1}{2m} \\sum_{i=1}^m ( h_{\\Theta} (X)-\\hat{y}^{(i)})^2 =\\frac{1}{2m} \\sum_{i = 1}^m (\\Theta^{T} X - \\hat{y}^{(i)})^2\n", "\\end{equation}\n", "\n", "Otras métricas pueden ser definidas como sigue en la siguiente referencia. [Metricas](https://jmlb.github.io/flashcards/2018/04/21/list_cost_functions_fo_neuralnets/).\n", "\n", "Nuestro objetivo será encontrar los valores mínimos \n", "$\\Theta = \\theta_0,\\theta_1,\\theta_2,...,\\theta_n$ que minimizan el error, respecto a los valores etiquetados y esperados $\\hat{y}$ \n", "\n", "\n", "Para encontrar $\\Theta$ optimo, se necesita minimizar la función de coste. Ecnontremos los valores exactos.\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n" ], "metadata": { "id": "GnE9vnCkY2FK" } }, { "cell_type": "markdown", "source": [ "# Normal equation\n", "Se puede encontrar una solucion exacta para theta sin necesidad de emplear el gradiente descente de la sesiones pasadas, para ellos se puede encontrar el valor minimo de theta y a partir de alli determinar el valor de theta que minimiza J. \n", "\n", "Los pasos para esta minimizacion se dejan como tarea, y pueden ser calculados según lo siguiente:\n", "\n", "Si J es la funcion de coste dada por:\n", "\n", "\\begin{equation}\n", "J(\\theta_1,\\theta_2,\\theta_3, ...,\\theta_n )=\\frac{1}{2m} \\sum_{i = 1}^m (\\Theta^{T} X - \\hat{y}^{(i)})^2\n", "\\end{equation}\n", "\n", "\n", "Demostrar que:\n", "\n", "- $J(\\theta_1,\\theta_2,\\theta_3, ...,\\theta_n ) = \\frac{1}{2m} (\\Theta ^ T X - y)^T (\\Theta ^ T X - y)$\n", "\n", "- $ \\nabla _{\\theta} J = \\frac{1}{m}( (X^T X) \\Theta - X^T y)$\n", "\n", "\n", "Para encontrar el valor minimo de \\theta, $\\nabla _{\\theta} J = 0$, \n", "\n", "- $\\Theta = (X^T X)^{-1} X^T y$\n", "\n", "\n", "\n", "\n", "Para la demostracion anterior emplee las siguientes propiedades:\n", "\n", "- $z^T z= \\sum_i z_i^2$\n", "- $a^T b = b^Ta$\n", "- $\\nabla _x b^T x = b$\n", "- $\\nabla _x x^T A x = 2Ax$\n", "\n", "donde a, b, x son matrices, $\\nabla_x$ es la derivada respecto al vector x, y A es una matriz simétrica" ], "metadata": { "id": "mT4-yW7jZTmz" } }, { "cell_type": "code", "source": [ "from sklearn.datasets import load_boston\n", "import pandas as pd\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from matplotlib import cm\n", "#from matplotlib.ticker import LinearLocator\n", "import numpy as np" ], "metadata": { "id": "9W1oojJTv89P" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Regresion lineal simple\n", "N = 10\n", "x1 = np.linspace(-1, 1, N)\n", "y = 2*x1 #- 3*x2 + 0.0\n", "df = pd.DataFrame({\"Y\":y, \"X1\":x1})\n", "df[\"ones\"] = np.ones(N)\n" ], "metadata": { "id": "1oyJaDpCv5aq" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "plt.plot(df.X1,df.Y,\"ro\")" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 282 }, "id": "RVUm-SbqFb9N", "outputId": "9649c174-8d50-4b31-f2ec-e51865e21e32" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "[]" ] }, "metadata": {}, "execution_count": 665 }, { "output_type": "display_data", "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD4CAYAAADvsV2wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAWIUlEQVR4nO3dfZAkdX3H8fdnjwdr4gPgXXjeXSgvUeIDkCmCMRUfQAUqxfmAyVFjBB9qopE8VJJKMFulKaq2oklVrFhQ4hQS0UyJBkN5xjN4CBSx4iGDxdOBwILscucpKyjGWkVPvvmje725ZeZ2Z7tnZnd+n1fVVHf/+jf9+9IzfLavZ6ZbEYGZmY2+sWEXYGZmg+HANzNLhAPfzCwRDnwzs0Q48M3MEnHIsAs4mI0bN8bk5OSwyzAzWzfuuOOOH0TEpk7r1nTgT05O0mq1hl2Gmdm6IWm22zqf0jEzS4QD38wsEQ58M7NEOPDNzBLhwDczS0ThwJd0oqSbJd0naZekv+jQR5I+JmlG0t2STi86rpnZyGk2YXISxsayabNZ6ubL+FrmPuCvI+Jbkp4H3CFpR0Tc19bnXGBz/vgd4OP51MzMIAv3eh0WFrLl2dlsGaBWK2WIwkf4EbE3Ir6Vz/8fcD9w/JJuW4BPR2YncISkY4uObWY2Mqam9of9ooWFrL0kpZ7DlzQJnAbctmTV8cBjbcu7efYfhcVt1CW1JLXm5+fLLM/MbO2am+utfRVKC3xJzwW+APxlRPx4tduJiEZEVCOiumlTx18Hm5mNnvHx3tpXoZTAl3QoWdg3I+I/O3TZA5zYtnxC3mZmZgDT01CpHNhWqWTtJSnjWzoCPgncHxH/0qXbNuAd+bd1zgSeioi9Rcc2MxsZtRo0GjAxAVI2bTRK+8AWyvmWzquAPwbukXRn3vb3wDhARFwJbAfOA2aABeCdJYxrZjZaarVSA36pwoEfEV8HtEyfAN5fdCwzM1s9/9LWzCwRDnwzs0Q48M3MEuHANzNLhAPfzCwRDnwzs0Q48M3MEuHANzNLhAPfzCwRDnwzs0Q48M3MEuHANzNLhAPfzCwRDnwzs2YTJidhbCybNpvDrqgvyrgevpnZ+tVsQr2+/wbis7PZMvT12vTD4CN8M0vb1NT+sF+0sJC1j5iy7ml7taTHJd3bZf1rJD0l6c788cEyxjUzK2xurrf2daysI/xPAecs0+d/IuLU/HFZSeOamRUzPt5b+zpWSuBHxK3Ak2Vsy8xsoKanoVI5sK1SydpHzCDP4b9S0l2SviLpt7p1klSX1JLUmp+fH2B5ZpakWg0aDZiYACmbNhoj94EtgLL7i5ewIWkS+K+IeGmHdc8HnomIn0g6D/jXiNi83Dar1Wq0Wq1S6jMzS4GkOyKi2mndQI7wI+LHEfGTfH47cKikjYMY28zMMgMJfEnHSFI+f0Y+7hODGNvMzDKl/PBK0meB1wAbJe0GPgQcChARVwIXAO+TtA/4KbA1yjqXZGZmK1JK4EfEhcusvxy4vIyxzMxsdfxLWzOzRDjwzcwS4cA3M0uEA9/MLBEOfDOzRDjwzcwS4cA3M0uEA9/MLBEOfDOzRDjwzcwS4cA3s+FqNmFyEsbGsmmzOeyKRlYp19IxM1uVZhPq9f03EZ+dzZZhJG9AMmw+wjez4Zma2h/2ixYWsnYrnQPfzIZnbq63divEgW9mwzM+3lu7FeLAN7PhmZ6GSuXAtkola7fSlRL4kq6W9Like7usl6SPSZqRdLek08sY18zWuVoNGg2YmAApmzYa/sC2T8o6wv8UcM5B1p8LbM4fdeDjJY1rZutdrQaPPgrPPJNNHfZ9U0rgR8StwJMH6bIF+HRkdgJHSDq2jLHNzGxlBnUO/3jgsbbl3Xnbs0iqS2pJas3Pzw+kODOzFKy5D20johER1Yiobtq0adjlmJmNjEEF/h7gxLblE/I2MzMbkEEF/jbgHfm3dc4EnoqIvQMa28zMKOlaOpI+C7wG2ChpN/Ah4FCAiLgS2A6cB8wAC8A7yxjXzMxWrpTAj4gLl1kfwPvLGMvMzFZnzX1oa2Zm/eHANzNLhAPfzCwRDnwzs0Q48M3MEuHANzNLhAPfzCwRDnyzVDWbMDkJY2PZtNkcdkXWZ6X88MrM1plmE+r1/TcQn53NlsHXox9hPsI3S9HU1P6wX7SwkLXbyHLgm6Vobq63dhsJDnyzFI2P99ZuI8GBb5ai6WmoVA5sq1SydhtZDnyzFNVq0GjAxARI2bTR8Ae2I87f0jFLVa3mgE9MKUf4ks6R9ICkGUmXdlh/saR5SXfmj/eUMa6Zma1c4SN8SRuAK4DXA7uB2yVti4j7lnT9XERcUnQ8MzNbnTKO8M8AZiLikYj4OXAtsKWE7ZqZWYnKCPzjgcfalnfnbUu9VdLdkq6TdGK3jUmqS2pJas3Pz5dQnpmZweC+pfMlYDIiXg7sAK7p1jEiGhFRjYjqpk2bBlSemdnoKyPw9wDtR+wn5G2/EhFPRMTT+eJVwG+XMK6ZmfWgjMC/Hdgs6SRJhwFbgW3tHSQd27Z4PnB/CeOamVkPCn9LJyL2SboEuAHYAFwdEbskXQa0ImIb8OeSzgf2AU8CFxcd18zMeqOIGHYNXVWr1Wi1WsMuw8xs3ZB0R0RUO63zpRXMzBLhwDczS4QD38wsEQ58M7NEOPDNzBLhwDcbtGYTJidhbCybNpvDrsgS4evhmw1Sswn1+v4biM/OZsvga9Nb3/kI32yQpqb2h/2ihYWs3azPHPhmgzQ311u7WYkc+GaDND7eW7tZiRz4ZoM0PQ2VyoFtlUrWbtZnDnyzQarVoNGAiQmQsmmj4Q9sbSD8LR2zQavVHPA2FD7CNzNLhAPfzCwRDnwzs0SUEviSzpH0gKQZSZd2WH+4pM/l62+TNFnGuGZmtnKFA1/SBuAK4FzgFOBCSacs6fZu4IcR8SLgo8BHio5rZma9KeMI/wxgJiIeiYifA9cCW5b02QJck89fB5wlSSWMbWZmK1RG4B8PPNa2vDtv69gnIvYBTwEv7LQxSXVJLUmt+fn5EsozMzNYgx/aRkQjIqoRUd20adOwyzEzGxllBP4e4MS25RPyto59JB0CvAB4ooSxzcxshcoI/NuBzZJOknQYsBXYtqTPNuCifP4C4KaIiBLGNjOzFSp8aYWI2CfpEuAGYANwdUTsknQZ0IqIbcAngc9ImgGeJPujYGZmA1TKtXQiYjuwfUnbB9vmfwa8rYyxzMxsddbch7ZmZtYfDnwzs0Q48C0dzSZMTsLYWDZtNoddkdlA+Xr4loZmE+r1/TcQn53NlsHXprdk+Ajf0jA1tT/sFy0sZO1miXDgWxrm5nprNxtBDnxLw/h4b+1mI8iBb2mYnoZK5cC2SiVrN0uEA9/SUKtBowETEyBl00bDH9haUvwtHUtHreaAt6T5CN/MLBEOfDOzRDjwzcwS4cA3M0uEA9/MLBEOfDOzRBQKfElHSdoh6aF8emSXfr+UdGf+WHr7QzMzG4CiR/iXAl+LiM3A1/LlTn4aEafmj/MLjmlmZqtQNPC3ANfk89cAbyq4PTMz65OigX90ROzN578HHN2l33MktSTtlHTQPwqS6nnf1vz8fMHyzMxs0bKXVpB0I3BMh1UHXEg8IkJSdNnMRETskXQycJOkeyLi4U4dI6IBNACq1Wq37ZmZWY+WDfyIOLvbOknfl3RsROyVdCzweJdt7Mmnj0i6BTgN6Bj4ZmbWH0VP6WwDLsrnLwK+uLSDpCMlHZ7PbwReBdxXcFwzM+tR0cD/MPB6SQ8BZ+fLSKpKuirv8xKgJeku4GbgwxHhwDczG7BCgR8RT0TEWRGxOSLOjogn8/ZWRLwnn//fiHhZRLwin36yjMJtHWk2YXISxsayabM57IrMkuTr4Vt/NZtQr++/gfjsbLYMvja92YD50grWX1NT+8N+0cJC1m5mA+XAt/6am+ut3cz6xoFv/TU+3lu7mfWNA9/6a3oaKpUD2yqVrN3MBsqBb/1Vq0GjARMTIGXTRsMf2JoNgb+lY/1XqzngzdYAH+GbmSXCgW9mlggHvplZIhz4ZmaJcOCbmSXCgW9mlggHvplZIhz4ZmaJKBT4kt4maZekZyRVD9LvHEkPSJqRdGmRMc3MbHWKHuHfC7wFuLVbB0kbgCuAc4FTgAslnVJwXDMz61GhSytExP0Akg7W7QxgJiIeyfteC2zB97U1MxuoQZzDPx54rG15d97WkaS6pJak1vz8fN+LMzNLxbJH+JJuBI7psGoqIr5YdkER0QAaANVqNcrevplZqpYN/Ig4u+AYe4AT25ZPyNvMzGyABnFK53Zgs6STJB0GbAW2DWBcazZhchLGxrJpsznsisxsiIp+LfPNknYDrwS+LOmGvP04SdsBImIfcAlwA3A/8PmI2FWsbFtWswn1OszOQkQ2rdcd+mYJU8TaPU1erVaj1WoNu4z1aXIyC/mlJibg0UcHXY2ZDYikOyKi4++i/EvbUTU311u7mY08B/6oGh/vrd3MRp4Df1RNT0OlcmBbpZK1m1mSHPijqlaDRiM7Zy9l00bDNxM3S1ihSyvYGlerOeDN7Fd8hG9mlggHvplZIhz4ZmaJcOCbmSXCgW9mlggHvplZIhz4ZmaJcOCbmSXCgW9mlggHvplZIhz4ZmaJKHrHq7dJ2iXpGUkdL7if93tU0j2S7pTkO5qYmQ1B0Yun3Qu8BfjECvq+NiJ+UHA8MzNbpUKBHxH3A0gqpxozM+ubQZ3DD+Crku6QVD9YR0l1SS1Jrfn5+QGV1wfNZnZf2bGxbOqbh5vZkC17hC/pRuCYDqumIuKLKxzn9yJij6RfB3ZI+nZE3NqpY0Q0gAZkNzFf4fbXlmYT6nVYWMiWZ2ezZfD16c1saJYN/Ig4u+ggEbEnnz4u6XrgDKBj4I+Eqan9Yb9oYSFrd+Cb2ZD0/ZSOpF+T9LzFeeANZB/2jq65ud7azcwGoOjXMt8saTfwSuDLkm7I24+TtD3vdjTwdUl3Ad8EvhwR/11k3DVvfLy3djOzASj6LZ3rges7tH8XOC+ffwR4RZFx1p3p6QPP4QNUKlm7mdmQ+Je2/VCrQaMBExMgZdNGw+fvzWyoiv7wyrqp1RzwZram+AjfzCwRDnwzs0Q48M3MEuHANzNLhAPfzCwRDnwzs0Q48M3MEuHANzNLhAPfzCwRDnwzs0Q48M3MEuHANzNLhAPfzCwRDnwzs0QUvePVP0v6tqS7JV0v6Ygu/c6R9ICkGUmXFhlzWc0mTE7C2Fg2bTb7OpyZ2XpR9Ah/B/DSiHg58CDwgaUdJG0ArgDOBU4BLpR0SsFxO2s2sztNzc5CRDat1x36ZmYUDPyI+GpE7MsXdwIndOh2BjATEY9ExM+Ba4EtRcbtamrqwNsKQrY8NdWX4czM1pMyz+G/C/hKh/bjgcfalnfnbR1JqktqSWrNz8/3VsHcXG/tZmYJWTbwJd0o6d4Ojy1tfaaAfUDhcycR0YiIakRUN23a1NuTx8d7azczS8iy97SNiLMPtl7SxcAfAGdFRHTosgc4sW35hLytfNPT2Tn79tM6lUrWbmaWuKLf0jkH+Fvg/IhY6NLtdmCzpJMkHQZsBbYVGberWg0aDZiYACmbNhq+mbiZGSs4wl/G5cDhwA5JADsj4r2SjgOuiojzImKfpEuAG4ANwNURsavguN3Vag54M7MOCgV+RLyoS/t3gfPalrcD24uMZWZmxfiXtmZmiXDgm5klwoFvZpYIB76ZWSLU+avza4OkeWB2lU/fCPygxHLK4rp647p647p6M4p1TUREx1+trunAL0JSKyKqw65jKdfVG9fVG9fVm9Tq8ikdM7NEOPDNzBIxyoHfGHYBXbiu3riu3riu3iRV18iewzczswON8hG+mZm1ceCbmSViXQe+pLdJ2iXpGUldv8LU7Sbq+SWbb8vbP5dfvrmMuo6StEPSQ/n0yA59XivpzrbHzyS9KV/3KUnfaVt36qDqyvv9sm3sbW3tw9xfp0r6Rv563y3pj9rWlbq/ur1f2tYfnv/3z+T7Y7Jt3Qfy9gckvbFIHauo668k3Zfvn69Jmmhb1/E1HVBdF0uabxv/PW3rLspf94ckXTTguj7aVtODkn7Utq4v+0vS1ZIel3Rvl/WS9LG85rslnd62rvi+ioh1+wBeAvwmcAtQ7dJnA/AwcDJwGHAXcEq+7vPA1nz+SuB9JdX1T8Cl+fylwEeW6X8U8CRQyZc/BVzQh/21orqAn3RpH9r+An4D2JzPHwfsBY4oe38d7P3S1udPgSvz+a3A5/L5U/L+hwMn5dvZMMC6Xtv2HnrfYl0He00HVNfFwOUdnnsU8Eg+PTKfP3JQdS3p/2dkl27v9/76feB04N4u688ju1WsgDOB28rcV+v6CD8i7o+IB5bp1vEm6pIEvA64Lu93DfCmkkrbkm9vpdu9APhKdL+JTFl6retXhr2/IuLBiHgon/8u8DjQ4z0wV6Tj++Ug9V4HnJXvny3AtRHxdER8B5jJtzeQuiLi5rb30E6yu8v120r2VzdvBHZExJMR8UNgB3DOkOq6EPhsSWN3FRG3kh3cdbMF+HRkdgJHSDqWkvbVug78Fep2E/UXAj+KiH1L2stwdETszee/Bxy9TP+tPPvNNp3/k+6jkg4fcF3PUXYj+Z2Lp5lYQ/tL0hlkR20PtzWXtb+6vV869sn3x1Nk+2clz+1nXe3eTXakuKjTazrIut6avz7XSVq85ema2F/5qa+TgJvamvu1v5bTre5S9lXRO171naQbgWM6rJqKiC8Oup5FB6urfSEiQlLX777mf71fRnZHsEUfIAu+w8i+j/t3wGUDrGsiIvZIOhm4SdI9ZKG2aiXvr88AF0XEM3nzqvfXKJL0dqAKvLqt+VmvaUQ83HkLpfsS8NmIeFrSn5D96+h1Axp7JbYC10XEL9vahrm/+mbNB34scxP1Feh2E/UnyP65dEh+lNbTzdUPVpek70s6NiL25gH1+EE29YfA9RHxi7ZtLx7tPi3p34C/GWRdEbEnnz4i6RbgNOALDHl/SXo+8GWyP/Y727a96v3VQbf3S6c+uyUdAryA7P20kuf2sy4knU32R/TVEfH0YnuX17SMAFu2roh4om3xKrLPbBaf+5olz72lhJpWVFebrcD72xv6uL+W063uUvZVCqd0Ot5EPbJPQm4mO38OcBFQ1r8YtuXbW8l2n3XuMA+9xfPmbwI6fqLfj7okHbl4SkTSRuBVwH3D3l/5a3c92fnN65asK3N/dXy/HKTeC4Cb8v2zDdiq7Fs8JwGbgW8WqKWnuiSdBnwCOD8iHm9r7/iaDrCuY9sWzwfuz+dvAN6Q13ck8AYO/JduX+vKa3sx2Yeg32hr6+f+Ws424B35t3XOBJ7KD2jK2Vf9+CR6UA/gzWTnsp4Gvg/ckLcfB2xv63ce8CDZX+iptvaTyf6HnAH+Azi8pLpeCHwNeAi4ETgqb6+S3dx9sd8k2V/usSXPvwm4hyy4/h147qDqAn43H/uufPrutbC/gLcDvwDubHuc2o/91en9QnaK6Px8/jn5f/9Mvj9ObnvuVP68B4BzS36/L1fXjfn/B4v7Z9tyr+mA6vpHYFc+/s3Ai9ue+658P84A7xxkXfnyPwAfXvK8vu0vsoO7vfl7eTfZZy3vBd6brxdwRV7zPbR9+7CMfeVLK5iZJSKFUzpmZoYD38wsGQ58M7NEOPDNzBLhwDczS4QD38wsEQ58M7NE/D9av0VB/IrtPwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" } } ] }, { "cell_type": "code", "source": [ "y = np.reshape(df.Y.values, (N,1))\n", "\n", "X = df[[\"ones\",\"X1\"]].values\n", "X = np.matrix(X)\n", "theta = (X.T@X).I @ X.T @ y\n", "theta = np.array(theta).flatten()\n", "theta" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "Z7iagdu1z2Xz", "outputId": "5e23ab9f-ff9a-45ef-b5ca-7d413d150148" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "array([-5.55111512e-17, 2.00000000e+00])" ] }, "metadata": {}, "execution_count": 666 } ] }, { "cell_type": "markdown", "source": [ "\n", "- $\\Theta = (X^T X)^{-1} X^T y$\n" ], "metadata": { "id": "I7x_ULqZyR_6" } }, { "cell_type": "code", "source": [ "plt.plot(df.X1,df.Y,\"ro\")\n", "x_ = np.linspace(-1, 1)\n", "plt.plot(x_ ,theta[0] + theta[1]*x_ )" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 282 }, "id": "NBuCpOSjx4wy", "outputId": "00dada93-e248-44f1-96b4-80053640f5af" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "[]" ] }, "metadata": {}, "execution_count": 667 }, { "output_type": "display_data", "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD4CAYAAADvsV2wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3dd3hUVf7H8fc3AQKh9x4C0psIEewrVkAFBVQUe4lrWbdKiygqKKA/V9eG2EtsSxEEFEGsaw0uJIQaWggt1BAYQtr5/TGjzGJCcSaZJPN5PU+ezL335J4vd4ZPbu7cOcecc4iISMUXEeoCRESkdCjwRUTChAJfRCRMKPBFRMKEAl9EJExUCnUBR9OgQQMXGxsb6jJERMqNxYsX73TONSxqW5kO/NjYWJKSkkJdhohIuWFmG4vbpks6IiJhQoEvIhImFPgiImFCgS8iEiYU+CIiYSLgwDezlmb2uZktN7NUM/tzEW3MzP5lZmlmlmxmPQPtV0SkwklMhNhYiIjwfk9MDOrug3FbZj7wd+fcz2ZWE1hsZgucc8v92vQH2vm++gAv+L6LiAh4wz0+Hjwe7/LGjd5lgOHDg9JFwGf4zrmtzrmffY+zgRVA8yOaDQLedF7fA3XMrGmgfYuIVBgJCeDx8FPzzkzpPcS7zuPxrg+SoF7DN7NY4BTghyM2NQc2+S1n8NtfCr/sI97MkswsaceOHcEsT0SkzNq/bQcPXPBHrrxuMu/06IencpR3Q3p60PoI2idtzawGMB34i3Nu3+/dj3NuKjAVIC4uTrOziEiF98WqTBJun8KW6DrcnDSLf3z1FtF5h7wbY2KC1k9QAt/MKuMN+0Tn3IwimmwGWvott/CtExEJW3sO5PLI3OXM+HkzbevVZtrbY+m1bunhBtHRMGFC0PoLOPDNzIBXgBXOuSeLaTYbuMfM3sP7Zm2Wc25roH2LiJRHzjnmpWzjwdnL2OvJ40/nteWe89oS1T7be80+Pd17Zj9hQtDesIXgnOGfCVwPpJjZEt+6MUAMgHNuCjAPGACkAR7g5iD0KyJS7mTuy+H+D5fx6fLtdGtemzdv6UPnZrW8G4cPD2rAHyngwHfOfQPYMdo44O5A+xIRKa+cc/w7KYNH5i4nN7+Q0f07cutZrakUWXqffy3TwyOLiFQEm3Z7GD0jhW/SdtK7dT0mDu5Gm4Y1Sr0OBb6ISAkpKHS88e0GHp+/isgIY/zlXbm2dwwREUe9KFJiFPgiIiVgzfZsRk5P5uf0vfTt0JAJV3SjWZ1qIa1JgS8iEkR5BYVM+WItzyxKo3pUJE9d3YNBPZrhvaExtBT4IiJBkpKRxX3TlrJyWzaXndyMBy/rTIMaUaEu61cKfBGRAOXkFfDPhat56at1NKwZxUs3xHFh58ahLus3FPgiIgH4ft0uRs9IYf3OAww7tSWjB3SidrXKoS6rSAp8EZHfITsnj4kfryTxh3Ri6kXzzm19OKNtg1CXdVQKfBGRE7Ro5XYSZi5j+74cbjurNX+7qD3RVcp+nJb9CkVEyojdB3J5+KNUPlyyhfaNa/D88DM4JaZuqMs6bgp8EZFjcM7xUfJWxs1OJTsnjz+f3467+7alSqXyNS24Al9E5Ci2ZXkHO1u4Yjsnt6jNpKF96NikVqjL+l0U+CIiRXDO8d5Pm3h07gryCgtJGNCJW85qTWSIhkUIBgW+iEhi4v+MQ7/xgccYld+a79bt4rQ29Zg4uDuxDaqHusqAKfBFJLwlJkJ8PHg8FFgErzU6hSdSo6gctZPHBndn2Kkty8SwCMGgwBeR8JaQAB4Pqxq0YkT/e1narAPnp/3I+NRZNH10ybF/vhwJ1py2rwKXApnOua5FbD8XmAWs962a4Zx7OBh9i4gEIjdjC8+feQ3PnX4VNQ95+NfsyVy24qsKc1bvL1hn+K8DzwJvHqXN1865S4PUn4hIwJZu2suI255lVZ3mDEr9ggc/m0q9g/u8G2NiQltcCQhK4DvnvjKz2GDsS0SkpB3MLeDJBat45Zv1NGrQlFdmTuT85d8cbhAd7Z1AvIIpzWv4p5vZUmAL8A/nXGpRjcwsHogHiKmAv2FFJLS+W7uLUTOS2bjLw7V9YhjVvyO1Ou2DhE2/3qXDhAklOpl4qJh3fvEg7Mh7hj+nmGv4tYBC59x+MxsAPO2ca3esfcbFxbmkpKSg1Cci4W1fTh6PzVvJuz+m06p+NBMHd+f0k+qHuqygM7PFzrm4oraVyhm+c26f3+N5Zva8mTVwzu0sjf5FJLx9tsI72Flmdg7x57Thrxe0p1qVyFCXVepKJfDNrAmw3TnnzKw3EAHsKo2+RSR87dp/iIc+Ws7spVvo2KQmL17fi5Nb1gl1WSETrNsy3wXOBRqYWQbwIFAZwDk3BRgK3Glm+cBBYJgL1rUkEZEjOOeYvXQL42ansv9QPn+9oD13nntSuRvsLNiCdZfONcfY/ize2zZFRErUlr0Huf/DZSxamUmPlnWYPLQ77RvXDHVZZYI+aSsiFUJhoeOdH9OZ+PFKCgodYy/tzE1nxJbrwc6CTYEvIuXe+p0HGDU9mR/W7+bMtvV57IruxNSPDnVZZY4CX0TKrfyCQl75Zj1PLlhNlUoRTBzcjasr0GBnwabAF5FyacXWfYycnkxyRhYXdm7M+Mu70rhW1VCXVaYp8EWkXDmUX8Bzi9J4/ou11ImuzHPX9mRAtyY6qz8OCnwRKTd+Tt/DyGnJrMncz+BTmjP20s7UrV4l1GWVGwp8ESnzPLn5PDF/Na99u56mtary2s2n0rdDo1CXVe4o8EWkTPtP2k5GzUhm0+6D3HB6K0b060iNKEXX76GjJiJlUtbBPB6du4L3kzbRukF1PrjjdHq3rhfqsso1Bb6IlDnzU7cx9sNl7DqQy53nnsSfz29H1crhN9hZsIX3wBIiEnqJiRAbCxER7OjQjbsfm8kdby2mfo0oPrzrTEb266iwDxKd4YtI6CQmQnw8zuNhZpe+PHz+7Xh2G/c1O0j8Pf2pHKlz0mBS4ItI6CQksDmyOmOuHMGXbeLouXkFkz9+mrY1IuGvQ0NdXYWjwBeRkCgsdLxdvyuTrrgRZ8a4BVO4/r/ziHSFsFsfoioJCnwRKXVrd+xn1PRkfrrwTs5e/zOPzn+OllnbDzfQfNYlQoEvIqUmv6CQqV+v46mFa6haKYLHW3gY+sxEzOM53Cg62juJuARdsGa8ehW4FMgsZhJzA54GBgAe4Cbn3M/B6FtEyofULVmMnJ7Mss376NelCQ9f3oVGNatC3VxISID0dO+Z/YQJMHx4qMutkIJ1hv863hmt3ixme3+gne+rD/CC77uIVHA5eQU8uyiNKV+upU50FV4Y3pP+3ZoebjB8uAK+lARrisOvzCz2KE0GAW/65rH93szqmFlT59zWYPQvImXT4o27GTEtmbU7DjC0Vwvuv6QTdaI12FmolNY1/ObAJr/lDN+63wS+mcUD8QAxeuNGpFw6cCifx+ev4o3vNtCsdjXevKU357RvGOqywl6Ze9PWOTcVmAoQFxfnQlyOiJygr1bvYPSMFLZkHeTG02O57+IOVNdgZ2VCaT0Lm4GWfsstfOtEpILI8uQxfu5y/r04gzYNq/PvO04nLlaDnZUlpRX4s4F7zOw9vG/WZun6vUjF8cmyrYydlcruA7ncde5J3KvBzsqkYN2W+S5wLtDAzDKAB4HKAM65KcA8vLdkpuG9LfPmYPQrIqGVmZ3Dg7NS+XjZNro0q8XrN59Kl2a1Q12WFCNYd+lcc4ztDrg7GH2JSOg555i2OIPxc1dwMK+AEf06cPvZbTTYWRmnd1JE5IRs2u1hzMwUvl6zk1Nj6zJxSHdOalgj1GXJcVDgi8hxKSx0vPndBibPX4UBDw3swvWntSIiQgOdlRcKfBE5prTMbEZOT2Hxxj38oX1DJlzRlRZ1o0NdlpwgBb6IFCuvoJCpX63j6YVriI6K5MmrTuaKU5rjHR5LyhsFvogUadnmLO6blsyKrfu4pHtTxl3WhYY1o0JdlgRAgS8i/yMnr4CnFq7hpa/XUa96FaZc14t+XZuEuiwJAgW+iPzqx/W7GTU9mXU7D3B1XEvGDOhE7ejKoS5LgkQ3zYqEq8REiI2FiAj2t+3A2MkzuOrF78gtKOTtW/swaWh3hX0FozN8kXCUmAjx8eDx8HmbXiRcdDdbd1XmlgY5/OPPFxNdRdFQEelZFQlHCQnsKYzkkUv+xoyu59Fu50amvT2CXpUPwn1DQl2dlBAFvkiYcc4xr1pLHrxtPHur1uTe/7zL3d+9T1RBPuh2ywpNgS8SRrbvy2Hsh8v4dNAoum1dw1vvj6XTjg2HG2jSoQpNgS8SBpxz/Dspg0fmLic3v5DRTQ5y67NjqXRg/+FG0dHeCcSlwlLgi1Rw6bs8jJ6ZzH/SdtG7dT0mDelO6wbVoeEhSEiA9HTvmf2ECZpMvIJT4ItUUAWFjte/3cAT81cRGWGMv7wr1/aOOTzY2fDhCvgwE5T78M2sn5mtMrM0MxtVxPabzGyHmS3xfd0WjH5FpGhrtmczdMq3PDJnOae1qcenfz2H6zSyZdgL+AzfzCKB54ALgQzgJzOb7ZxbfkTT951z9wTan4gULze/kBe/XMszi9KoHhXJU1f3YFCPZhrsTIDgXNLpDaQ559YB+OatHQQcGfgiUoKSM/YyYloyK7dlc2n3powb2IUGNTTYmRwWjMBvDmzyW87AO1H5kYaY2TnAauCvzrlNRbTBzOKBeIAY3SImckwHcwt4auFqXvp6HQ1rRvHSDXFc2LlxqMuSMqi03rT9CHjXOXfIzO4A3gDOK6qhc24qMBUgLi7OlVJ9IuXS9+t2MWp6Mht2ebimd0tGD+hEraoa/0aKFozA3wy09Ftu4Vv3K+fcLr/Fl4HJQehXJGxl5+Qx8eOVJP6QTky9aN65rQ9ntG0Q6rKkjAtG4P8EtDOz1niDfhhwrX8DM2vqnNvqWxwIrAhCvyJhadHK7STMXMb2fTncdlZr/n5RB6pViQx1WVIOBBz4zrl8M7sHmA9EAq8651LN7GEgyTk3G7jXzAYC+cBu4KZA+xUJN7sP5PLwR6l8uGQLHRrX5IXretGjZZ1QlyXliDlXdi+Tx8XFuaSkpFCXIRJSzjk+St7KuNmpZOfkcXffttx1bluqVNJ0FvJbZrbYORdX1DZ90lakDNuWlcP9Hy5j4YrtnNyyDpOHdKdDk5qhLkvKKQW+SBnknOO9nzbx6NwV5BUWkjCgE7ec1ZpIfVJWAqDAFyljNu46wKjpKXy3bhent6nPxCHdaFW/eqjLkgpAgS9SRhQUOl77z3qe+HQVlSMieGxwN4ad2lLDIkjQKPBFyoBV27IZMT2ZpZv2ckGnRoy/vBtNalcNdVlSwSjwRUpbYuKv49Dnxrbm+Xsm8dyuaGpWrczTw3ow8GQNdiYlQ4EvUpoSEyE+HjweljRtz8i+97IqsxqDah/iwXsvoF71KqGuUCowBb5IaUpI4GBuAf/X91ZejRtIowN7eGXaQ5yfnwmjrwh1dVLBKfBFStG31GbULfeTXrcp1/73Y0Z98Rq1cj2gSzhSChT4IqUg62AeEz9ewbvDHqXVni28+85oTt+UcriBhgKXUqDAFylhC5Zv5/4PU9iRfYg7GuTwlxdGUG3f3sMNoqO9E4iLlDAFvkgJ2bn/EONmpzIneSsdm9TkpRvi6N6iDjTN+fUuHWJivGGvycSlFCjwRYLMOcesJVt46KNUDhwq4O8XtueOP5x0eLCz4cMV8BISCnyRINqy9yAJM1P4fNUOTonxDnbWrrEGO5OyQYEvEgSFhY7EH9OZ9PFKCgodD1zamRvPiNVgZ1KmKPBFArR+5wFGTk/mx/W7OattAx4b3I2W9aJDXZbIbwQl8M2sH/A03hmvXnbOTTxiexTwJtAL2AVc7ZzbEIy+RUIlv6CQV75Zz5MLVlOlUgSTh3TnyrgWGhZByqyAA9/MIoHngAuBDOAnM5vtnFvu1+xWYI9zrq2ZDQMmAVcH2rdIqCzfso+R05NJ2ZzFRZ0b88jlXWlcS4OdSdkWjDP83kCac24dgJm9BwwC/AN/EDDO93ga8KyZmSvL8yuKFOFQfgHPLkrjhS/WUie6Ms9d25MB3ZrorF7KhWAEfnNgk99yBtCnuDa+Sc+zgPrAziN3ZmbxQDxAjD59KGXI4o17GDk9mbTM/Qzu2Zyxl3SmrgY7k3KkzL1p65ybCkwF7yTmIS5HBE9uPk/MX81r366naa2qvHbzqfTt0CjUZYmcsGAE/magpd9yC9+6otpkmFkloDbeN29FyrRv1uxk1IxkMvYc5PrTWjGyf0dqRJW58ySR4xKMV+5PQDsza4032IcB1x7RZjZwI/AdMBRYpOv3UpZlHcxjwtzlfJCUQesG1fngjtPp3bpeqMsSCUjAge+7Jn8PMB/vbZmvOudSzexhIMk5Nxt4BXjLzNKA3Xh/KYiUSfNTtzH2w2XsOpDLneeexJ/Pb0fVypGhLkskYEH529Q5Nw+Yd8S6B/we5wBXBqMvkZKyI9s72NnclK10alqLV248lW4taoe6LJGg0cVICXvOOWb+dzMPz1mO51AB/7jIO9hZ5ciIUJcmElQKfAlrm/ceZMyMFL5cvYNereoyaUg32jbSYGdSMSnwJXwkJv46Dn1hTCve/ttkJu2siQPGXdaZG06PJUKDnUkFpsCX8JCYCPHx4PGwtl5zRp15Jz9tiebsGjk8etdFGuxMwoICX8JDQgL5B3OY2mcoT511LVXzc3li7pMMyV6L3b8h1NWJlAoFvoSF1JxIRt7wJMuatKX/qv/w0IIXaHRgL2gMHAkjCnyp0HLyCnhm0Rqm3PBP6nr28cLMR+m/+tvDDTRek4QRBb5UWEkbdjNiejLrdhxgaP187n/5b9TZs+Nwg+ho7wTiImFCgS8VzoFD+Tw+fxVvfLeBZrWr8eYtvTmnfUNocfDXu3SIifGGvSYTlzCiwJcK5cvVOxgzI4UtWQe58fRY7ru4A9V/Gexs+HAFvIQ1Bb5UCHs9uTwyZwXTf86gTcPq/PuO04mL1WBnIv4U+FLufZyylbGzUtnjyeXuvifxp/M02JlIURT4Um5l7svhgVmpfJK6jS7NavHGLafSpZkGOxMpjgJfyh3nHNMWZ/DInOXk5Bcyol8Hbj+7jQY7EzkGBb6UK5t2exgzM4Wv1+zk1Ni6TBzSnZMa1gh1WSLlggJfyoWCQsdb321g8vxVGPDwoC5c16eVBjsTOQEBBb6Z1QPeB2KBDcBVzrk9RbQrAFJ8i+nOuYGB9CvhJS0zm5HTU1i8cQ9/aN+QRwd3o3mdaqEuS6TcCfQMfxTwmXNuopmN8i2PLKLdQedcjwD7kjCTV1DIi1+u5V+fpREdFcmTV53MFac0xzT+jcjvEmjgDwLO9T1+A/iCogNf5ISkZGQxYnoyK7bu45LuTRl3WRca1owKdVki5Vqggd/YObfV93gb0LiYdlXNLAnIByY65z4sbodmFg/EA8RoYKuwk5NXwFML1/DS1+uoV70KL17fi4u7NAl1WSIVwjED38wWAkX9j0vwX3DOOTNzxeymlXNus5m1ARaZWYpzbm1RDZ1zU4GpAHFxccXtTyqgH9btYtSMFNbvPMDVcS0ZM6ATtaMrh7oskQrjmIHvnLuguG1mtt3MmjrntppZUyCzmH1s9n1fZ2ZfAKcARQa+hJ/snDwmfbKSt79Pp2W9arx9ax/Oatcg1GWJVDiBXtKZDdwITPR9n3VkAzOrC3icc4fMrAFwJjA5wH6lgvh8ZSZjZqawbV8Ot5zZmn9c3J7oKrpbWKQkBPo/ayLwgZndCmwErgIwszjgj86524BOwItmVghE4L2GvzzAfqWc23Mgl0fmLGfGfzfTrlENpt95Bj1j6oa6LJEKLaDAd87tAs4vYn0ScJvv8bdAt0D6kXIuMfHXcehdTAxz75vMg7vrknUwj3vPa8vd57UlqpIGOxMpafrbWUpWYiLEx4PHw/Ya9Rjb8zo+3VSdbtU8vP2nvnRqWivUFYqEDQW+lKyEBJzHwwfdL2R831vJjazM6M9f5dbM/1LpwXWhrk4krCjwpUSlZx1i9NXj+U9sD3qnpzDpk2dovWcL6NOyIqVOgS8loqDQ8fq3G3ji1ueILChg/PznuHbJJ0Tg+2iFPlQnUuoU+BJ0q7dnM2JaMks27eW8uhGM/9dfaJa56XCD6GjvBOIiUqoU+BI0ufmFTPlyLc8sWkONqEo8PawHA09uhsUe+PUuHWJivGGvycRFSp0CX4Ji6aa9jJyezMpt2Vx2cjPGXdaZ+jV8g50NH66AFykDFPgSkIO5BTy1cDUvfb2OhjWjeOmGOC7sXNwYeiISSgp8+d2+W7uL0TOS2bDLwzW9WzKqfydqV9NgZyJllQJfTti+nDwmfrySd35IJ6ZeNO/c1ocz2mqwM5GyToEvJ2TRyu2MmbGMzOwcbj+7NX+7sAPVqmhYBJHyQIEvx2XX/kM8PGc5s5ZsoUPjmky5vhc9WtYJdVkicgIU+HJUzjlmL93CQx8tJzsnj79c0I67zm1LlUoRoS5NRE6QAl+KtS0rh4SZKXy2MpOTW9Zh8pDudGhSM9RlicjvpMCX3ygsdLz30yYem7eCvMJC7r+kEzef2ZrICI1/I1KeBfR3uZldaWapZlbom/SkuHb9zGyVmaWZ2ahA+pSStWHnAa59+XvGzEyha/PazP/LOdx2dhuFvUgFEOgZ/jJgMPBicQ3MLBJ4DrgQyAB+MrPZmvWqbCkodLz6zXr+b8EqKkdEMHFwN64+tSWmUS1FKoxAZ7xaARwrFHoDac65db627wGDAAV+GbFqWzYjpi1laUYWF3RqxPjLu9GkdtVQlyUiQVYa1/CbA35DJZIB9CmusZnFA/EAMRpCt0Qdyi/g+c/X8vwXadSqWplnrjmFS7s31Vm9SAV1zMA3s4VAkyI2JTjnZgW7IOfcVGAqQFxcnAv2/sXrv+l7GDk9mdXb93PFKc0Ze2ln6lWvEuqyRKQEHTPwnXMXBNjHZqCl33IL3zoJAU9uPv/36Wpe/c96mtSqyqs3xXFeRw12JhIOSuOSzk9AOzNrjTfohwHXlkK/kpj4P+PQfzt6EqOyGpG+28N1p8Uwsl9HalbVYGci4SKgwDezK4BngIbAXDNb4py72MyaAS875wY45/LN7B5gPhAJvOqcSw24cjm6xESIjwePh6yo6jzWaSDvra9BbJVs3os/k9Pa1A91hSJSysy5snuZPC4uziUlJYW6jPIpNhY2buTTtn24/6K72Fm9Drf/OJO/bvqGqmvXhLo6ESkhZrbYOVfk56L0SdsKaufOLMYNHMGcTufQMXM9L894hO7b0kB34IiELQV+BeOc48Mlm3no9il4IqP4+1dv8ccfplG5sMDbQLe6ioQtBX4FsmXvQRJmpvD5qh2cUqcqk1+6j3ab/S7fREd7JxAXkbCkwK8ACgsdiT+mM+njlRQUOh64tDM3nhFLZNv9/3OXDhMmaDJxkTCmwC/n1u88wMjpyfy4fjdntq3PxMHdaVkv2rtx+HAFvIj8SoFfTuUXFPLyN+v554LVRFWKYPLQ7lzZq4WGRRCRYinwy6EVW/cxYloyKZuzuLhLYx4Z1JVGtTTYmYgcnQK/HDmUX8Czi9J44Yu11ImuzPPDe9K/axOd1YvIcVHglxOLN3oHO0vL3M/gns0Ze0ln6mqwMxE5AQr8Ms6Tm8/j81fx+rcbaFa7Gq/ffCrndmgU6rJEpBxS4Jdh36zZyagZyWTsOcgNp7diRL+O1IjSUyYiv4/SowzK8uQxYd5yPkjKoE2D6nxwx+n0bl0v1GWJSDmnwC9jPlm2jbGzlrH7QC53nXsS957fjqqVI0NdlohUAAr8MiIzO4dxs1OZl7KNzk1r8dpNp9K1ee1QlyUiFYgCP8Scc8z4eTMPz1nOwbwC7ru4A/HntKFyZESoSxORCkaBH0IZezyMmbmMr1bvIK5VXSYO6U7bRjVCXZaIVFCBznh1JTAO6AT0ds4VOVuJmW0AsoECIL+4wfnDRWGh4+0fNjLp45U44KGBXbj+tFZEROgDVCJScgI9w18GDAZePI62fZ1zOwPsr9xbu2M/o6Yn89OGPZzTviGPXtGVFnWjQ12WiISBgALfObcC0Ef7j0NeQSFTv1rH05+toVrlSJ648mSG9GyuYycipaa03hl0wKdmttjM4o/W0MzizSzJzJJ27NhRSuWVgMRE77yyEREs63EWlz/yEY/PX8UFnRqx4G/nMFQjW4pIKTvmGb6ZLQSaFLEpwTk36zj7Ocs5t9nMGgELzGylc+6roho656YCU8E7iflx7r9sSUyE+HhyDuXxr7Ov58U+Q6i3ax9TOlWh3/Beoa5ORMLUMQPfOXdBoJ045zb7vmea2UygN1Bk4FcICQkk1W3FiP73sq5+S65MXsD9i16mdpMGcNdVoa5ORMJUid+WaWbVgQjnXLbv8UXAwyXdb6jsP5TP4+368WbPS2ielclb79/P2RuWeDeme0JbnIiEtUBvy7wCeAZoCMw1syXOuYvNrBnwsnNuANAYmOm7Xl0JeMc590mAdZdJX67ewZgZKWzpeQk3Lp7DfV+9SfW8nMMNYmJCV5yIhL1A79KZCcwsYv0WYIDv8Trg5ED6Kev2enJ5eM5yZvy8mZMaVmfaSQfo9ezb4B/20dHeScRFREJEn7QN0LyUrTwwaxl7PXnc07ct95zX1jvYWfUCSEiA9HTvmf2ECZpQXERCSoH/O2Xuy+GBWal8krqNrs1r8cYtvenSzG+ws+HDFfAiUqYo8E+Qc45/L85g/Jzl5OQXMrJfR24/uzWVNNiZiJRxCvwTsGm3hzEzU/h6zU56x9Zj4pButGmowc5EpHxQ4B+HgkLHm99tYPInq4gweGRQF4b30WBnIlK+KPCPIS0zmxHTkvk5fS9/aN+QRwd3o3mdaqEuS0TkhCnwi5FXUMiLX67lX5+lER0VyZNXncwVp2iwMxEpvxT4RUjJyOK+aUtZuS2bS7o1ZdzALjSsGRXqskREAqLA95OTV8BTC9fw0tfrqF+9Ci9e34uLuxQ1bpyISPmjwPf5Yd0uRs1IYf3OA1wd15Ixl0vRfHIAAAifSURBVHSidrXKoS5LRCRowj7ws3PymPzJKt76fiMt61Uj8bY+nNm2QajLEhEJurAO/M9XZZIwI4Wt+3K49azW/P2i9kRXCetDIiIVWFim254DuTwyZzkz/ruZdo1qMP3OM+gZUzfUZYmIlKiwCnznHHNTtvLgrFSyDuZx7/ntuLvvSURVigx1aSIiJS5sAn/7vhzGfriMT5dvp3uL2rx9Wx86Na0V6rJEREpNhQ985xwfJG1i/NwV5OYXMrp/R249S4OdiUj4CSj1zOxxM1tpZslmNtPM6hTTrp+ZrTKzNDMbFUifx5SYCLGxEBFBepdeDB8/i5HTU+jctBbz/3IOd/zhJIW9iISlQJNvAdDVOdcdWA2MPrKBmUUCzwH9gc7ANWbWOcB+i5aYCPHxFKRv4uVeA7mo3xiS9+QxoZmHd28/jdgG1UukWxGR8iDQKQ4/9Vv8HhhaRLPeQJpvqkPM7D1gELA8kL6LlJBAVoFx43WTWdKsI+el/ciET5+jab0acO+VQe9ORKQ8CeY1/FuA94tY3xzY5LecAfQpbidmFg/EA8Sc6KTf6enUco5We7Zxc9JHDFzxJQawf/eJ7UdEpAI6ZuCb2UKgqAFlEpxzs3xtEoB8IDHQgpxzU4GpAHFxce6EfjgmBtu4kafnPPGb9SIi4e6Yge+cu+Bo283sJuBS4HznXFEBvRlo6bfcwrcu+CZMgPh48HgOr4uO9q4XEQlzgd6l0w8YAQx0znmKafYT0M7MWptZFWAYMDuQfos1fDhMnQqtWoGZ9/vUqZpMXESEwK/hPwtEAQt8E4N875z7o5k1A152zg1wzuWb2T3AfCASeNU5lxpgv8UbPlwBLyJShEDv0mlbzPotwAC/5XnAvED6EhGRwOgTSCIiYUKBLyISJhT4IiJhQoEvIhImrOhb58sGM9sBbPydP94A2BnEcoJFdZ0Y1XViVNeJqYh1tXLONSxqQ5kO/ECYWZJzLi7UdRxJdZ0Y1XViVNeJCbe6dElHRCRMKPBFRMJERQ78qaEuoBiq68SorhOjuk5MWNVVYa/hi4jI/6rIZ/giIuJHgS8iEibKdeCb2ZVmlmpmhWZW7C1MxU2i7huy+Qff+vd9wzcHo656ZrbAzNb4vtctok1fM1vi95VjZpf7tr1uZuv9tvUorbp87Qr8+p7ttz6Ux6uHmX3ne76Tzexqv21BPV7FvV78tkf5/v1pvuMR67dttG/9KjO7OJA6fkddfzOz5b7j85mZtfLbVuRzWkp13WRmO/z6v81v242+532Nmd1YynX906+m1Wa2129biRwvM3vVzDLNbFkx283M/uWrOdnMevptC/xYOefK7RfQCegAfAHEFdMmElgLtAGqAEuBzr5tHwDDfI+nAHcGqa7JwCjf41HApGO0rwfsBqJ9y68DQ0vgeB1XXcD+YtaH7HgB7YF2vsfNgK1AnWAfr6O9Xvza3AVM8T0eBrzve9zZ1z4KaO3bT2Qp1tXX7zV05y91He05LaW6bgKeLeJn6wHrfN/r+h7XLa26jmj/J7xDt5f08ToH6AksK2b7AOBjwIDTgB+CeazK9Rm+c26Fc27VMZr9Oom6cy4XeA8YZGYGnAdM87V7A7g8SKUN8u3vePc7FPjYFT+JTLCcaF2/CvXxcs6tds6t8T3eAmQCRX6aMEBFvl6OUu804Hzf8RkEvOecO+ScWw+k+fZXKnU55z73ew19j3d2uZJ2PMerOBcDC5xzu51ze4AFQL8Q1XUN8G6Q+i6Wc+4rvCd3xRkEvOm8vgfqmFlTgnSsynXgH6eiJlFvDtQH9jrn8o9YHwyNnXNbfY+3AY2P0X4Yv32xTfD9SfdPM4sq5bqqmlmSmX3/y2UmytDxMrPeeM/a1vqtDtbxKu71UmQb3/HIwnt8judnS7Iuf7fiPVP8RVHPaWnWNcT3/Ewzs1+mPC0Tx8t36as1sMhvdUkdr2Mpru6gHKtAZ7wqcXYck6iHwtHq8l9wzjkzK/beV99v7254ZwT7xWi8wVcF7/24I4GHS7GuVs65zWbWBlhkZil4Q+13C/Lxegu40TlX6Fv9u49XRWRm1wFxwB/8Vv/mOXXOrS16D0H3EfCuc+6Qmd2B96+j80qp7+MxDJjmnCvwWxfK41Viynzgu2NMon4ciptEfRfeP5cq+c7STmhy9aPVZWbbzaypc26rL6Ayj7Krq4CZzrk8v33/crZ7yMxeA/5RmnU55zb7vq8zsy+AU4DphPh4mVktYC7eX/bf++37dx+vIhT3eimqTYaZVQJq4309Hc/PlmRdmNkFeH+J/sE5d+iX9cU8p8EIsGPW5Zzb5bf4Mt73bH752XOP+NkvglDTcdXlZxhwt/+KEjxex1Jc3UE5VuFwSafISdSd952Qz/FePwe4EQjWXwyzffs7nv3+5tqhL/R+uW5+OVDkO/olUZeZ1f3lkoiZNQDOBJaH+nj5nruZeK9vTjtiWzCPV5Gvl6PUOxRY5Ds+s4Fh5r2LpzXQDvgxgFpOqC4zOwV4ERjonMv0W1/kc1qKdTX1WxwIrPA9ng9c5KuvLnAR//uXbonW5autI943Qb/zW1eSx+tYZgM3+O7WOQ3I8p3QBOdYlcQ70aX1BVyB91rWIWA7MN+3vhkwz6/dAGA13t/QCX7r2+D9D5kG/BuIClJd9YHPgDXAQqCeb30c3sndf2kXi/c3d8QRP78ISMEbXG8DNUqrLuAMX99Lfd9vLQvHC7gOyAOW+H31KInjVdTrBe8looG+x1V9//403/Fo4/ezCb6fWwX0D/Lr/Vh1LfT9P/jl+Mw+1nNaSnU9BqT6+v8c6Oj3s7f4jmMacHNp1uVbHgdMPOLnSux44T252+p7LWfgfa/lj8AffdsNeM5Xcwp+dx8G41hpaAURkTARDpd0REQEBb6ISNhQ4IuIhAkFvohImFDgi4iECQW+iEiYUOCLiISJ/wcFW0o0n4cOIwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" } } ] }, { "cell_type": "markdown", "source": [ "# Modelo Bidimensional" ], "metadata": { "id": "XYsrWvMdHx4h" } }, { "cell_type": "code", "source": [ "N = 200\n", "x1 = np.linspace(-1, 1, N) \n", "x2 = np.linspace(-1, 1, N)\n", "\n", "X1, X2 = np.meshgrid(x1,x2)\n", "Y = 0.2*X1 - 0.5*X2 - 1.0\n", "fig, ax = plt.subplots(subplot_kw={\"projection\": \"3d\"})\n", "surf = ax.plot_surface(X1, X2, Y)\n", "ax.set_xlabel(\"X1\")\n", "ax.set_ylabel(\"X2\")\n", "ax.set_zlabel(\"Y1\")\n", "#scatter = ax.scatter(x1, x2, y,\"-\")" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 265 }, "id": "HIjp27125qXW", "outputId": "02f179bd-4154-49ae-d7b3-e79b14bb84b9" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "Text(0.5, 0, 'Y1')" ] }, "metadata": {}, "execution_count": 668 }, { "output_type": "display_data", "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAADnCAYAAAC9roUQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9eYwc13k9eu6trbeZITncxUXcRVKiRImSqDzHS2y9OHbi2IFj5y/Hv8RZgMRwgAR5CoIADhAHCpAEMWAY2RzYD1kcG8/5Ge9FibPYcWSLkURR1EpJnI2zL5zp6a3Wu7w/blepuqe7p3qmOZyh6ggEqZ6aquruqlPfPd/3nY9IKZEiRYoUKTYG9HafQIoUKVK8k5CSbooUKVJsIFLSTZEiRYoNREq6KVKkSLGBSEk3RYoUKTYQ+io/T0sbUqRIkaJ7kHY/SCPdFClSpNhApKSbIkWKFBuIlHRTpEiRYgORkm6KFClSbCBS0k2RIkWKDURKuilSpEixgUhJN0WKFCk2ECnppkiRIsUGIiXdFClSpNhApKSbIkWKFBuIlHRTpEiRYgORkm6KFClSbCBS0k2RIkWKDcRqLmMpUrSFlBJCCHieB8YYdF0HpRSapoFSCkopCGlrtpQixTsSZJXBlKm1Y4oVkFKCcw7GWMO/w5/FiTYk4fBPSsYp3iFoe4GnpJsiMZrJlhACQggYY2CMgVK6Yvv4nxs3bmD37t3I5XIpGae409H2Qk7lhRSrQkoJxhgmJyfR39+PfD6/gmBbISTlEL7vA0D0u4wxBEHQ8DspGae405GSboq2CMk2lA5KpRIymQwKhcKa9kcIaZAfmok0XHWFZNy8raZpkW4cknNKxim2GlLSTbECQogGnTaMWCmlEEKs2L5XxLcaGXPOMT4+DgDYv38/pJQdI+OUkFNsRqSkmyKCEAKMMXDOAayUB8JIda1Y6+/HyTiUJjRNayDj8AER/x1KKXRdT8k4xaZCSrrvcIRJriAIoii2HTFRSm8L6XbaX/zvEOExwnK25t8Jk3+FQiEl4xQbjpR036EIa2wZY7h27RpOnTq1KvEQQlrKC0nRa9LtdJz433GEOvVLL72E8+fPN/wsLlOE0XFKxil6jZR032GIk60QAoQQFIvFxNUIrUizVCrBtm0UCgVks9lNTVKh7BAm5kKEnwvnfEWtcSvNOK2oSLFWpKT7DkG7GttuiCMuL0gpsbS0hJGREWiahmw2i7m5ObiuCwDI5XLI5/PRn5CMexHp3opoud1n0YmMPc+DaZrIZrNpeVuKxEhJ9w5HK7JNEtW2AiEEnHPMz89jdHQU2WwWp0+fRjabRRAE0X6FELBtG7Zto1KpYHZ2Fq7rwvM8lMtllMvlFWTczTmsl3S7+f1OZDw7O4t8Po/BwcG0Cy9FYqSke4ci1C7jEdpayTbcX6VSweLiInbu3In77rsPuVwOAKJqhxCUUhQKBRQKBezevTt6fWhoCJlMBqZpolqtYm5uDo7jAFCRcS6XQ6FQQC6XQzabXdf5rob1EmD4+2HtcIjmWuM4UjJOAaSke8chJNuJiQnk83kMDAysi7yEEJiZmcGNGzdgGAYOHDiAY8eONWyTlDQopchkMti5c+eKYziOg1qttoKMs9lsg0yxEYm4btD83pM2fsRRLBYxODgI0zTTxo93AFLSvUPQ3NBg2zZ0XV/zjcs5x9TUFCYmJrBr1y5cuHABCwsLKwijG7STBiilEanGESfjWq2G+fl5lMtlSCmxvLy8QjNO+nDpFXF3K1PE/47vY2xsDNu2bYPrutGqJG38uHORku4WR7uGBk3TuirvCm/2MEqenp7G3r178cgjj8AwjGjfG1mn24qMp6enwRjD4OBgAxm3i4zbkXEvSKs5sbYWhJ9Jc2SbNn7cuUhJdwsiSUNDu5bdVqCUwvM8TE1NYXZ2FnfddRceffTRBq0y3O52L+/D95k0Mm5FxpZl9ayKotct0M3/303jx/z8PPbt27fCoyIl482FlHS3EJprbIHO3WNJSNf3fbiui8uXL+PQoUO4ePFiQ/1qHJu9OSKpTDE7O4tKpYLnn38+cWTcCr0k3aTo1PgxMTGBPXv2gHMeObqFSBs/Ng9S0t0CCMl2eXkZlUoFe/fuXfWGoZSuqCqIw3VdjI6OolgsQtd1XLhwAZlMpuN53C7vhfWimYx938frr7+Oc+fOJYqM25Hx7SDd1dDqgdGq1jj8O2382HikpLuJ0Vxj6/s+isUi9u3bt+rvUkpbJr1s28bo6CjK5TKOHDmCe+65B1euXEl0PluVdNthtcjYtm1Uq1UsLCzAtm0AjWTs+/6mej/t0G3jx+zsLPbt2xdpxml5W2+Rku4mRLuGhm6SY83yQrVaxcjICBzHwZEjR3DmzJnoBkoqRXTabivdjKtFqHEy3rVrV/S6EAKu60aRcaVSwRtvvAFN05DJZJDP56M643A6xkai2++gHRlPTU1h3759CIIAvu+njR89Rkq6mwirNTRomtZRMogjJMhyuYzh4WEwxnD06FHs2LGjZdImScS2WSLd2xVdUkojQt21axds28ahQ4eQy+UayDiMjKWUK2SKW0XG69Ham9GukSZt/OgNUtLdBGie0NDuou+mIqFWq2F6ehrlchnHjh3Dtm3b2m7bTaTbjvCS6Ju9IN3NdBPHH4xxMo7/PK4Z37x5syUZc84hhFh3x+Ctjqy7bfxYWlqKIv9W5W3vVKSkexsRaodhR1KS5FgncpRSYnFxESMjIwCAbdu24f7771/1PJKSbqfqhaQ30WbQQG9lqVfzz5KQse/7eOGFF9YVGa+XtNeDdmS8uLgI0zRhWVaDVBZv/IiXtr1TKipS0r0NiDc02LaN6enphpuyHdrJC1JKLCwsYGRkBLlcDmfOnAHnHJOTk4nOJ2n9batItVKpYHh4GJVKBaZpRrpmSBrxWt/NlkhbL9b6XuJkvHPnTszPz+Phhx9uGRk7jgMhxKpk3CvS7eX3wzmPSLXVMd6pjR8p6W4Q2jU0GIbRtU4b3+fs7CzGxsbQ39+Pc+fORSY0lUol8X6T1t/GyTnUijnnOHr0KPL5PIIgaKiFrVar4JzDsqzo57qug3PethZ4I9DLNuD1EkFcFkgaGbeSKQzDgBCiJzJFr8it3ffcbeNHEAQolUrYs2fPHdH4kZLuLcZqDQ1rSY4JITA9PY3x8XHs2LED58+fX1Fj200jQzfygud5uHLlCqSUkVYclrOZpgnTNLF9+/aG9+/7PqrVKmZnZ7G8vIwXX3wRQogo4x/P+ichjF6Q5mZpA06qhXciY9u2USwW4TgOrly50hAZh85toefvaujlA7HbfbUjY8dxsLi4iF27dq3a+BEGNf39/et/A7cIKeneIrSa0NDqqdxNckwIAd/3cenSJezevRsXLlyAaZott+2mZTfJtsvLy3jrrbdQrVbx0EMPYWBgING+CSGwLAuWZSEIAvT19eHQoUOQUjZk/BcXF6PorZUBejwa3CzoBemG18ZaECfjUDc9ffr0is92aWkJtm1HZBz/fHO5XAMx9lIb7hWBM8ZayhRAY60xAHznO9/BSy+9hD/8wz9c93FvFVLS7TGklPA8D77vwzCMtmQbIkmkGzehkVI2mNC0QzcRdKeouFgsYnh4GJqm4ciRI5iYmEhMuK2OE5I7IQTZbBbZbLbB6jG+lK5Wqw1dYrlcLlqOO46DTCazJsLarPLCehAny06fbTsyDlcdoUzRC8LsFYF3Opfme6tUKq35+twopKTbI8QbGhYWFlAsFnHq1KlVf6/TTRsEAW7cuIG5uTncdddduHjxIp599tlVCRfo3vCmedulpSUMDw9D13WcPHkS/f398DzvlnsvtFtKh9MopqenUavVMDQ0BMdxonKtePLOsqxES/b1YjORLud81f0kIeOlpSU4jtNSAmoVGa92vF4gjHSToFQqdSyP3AxISXedaNXQ0E1yrBU8z8PY2Bhu3ryJQ4cO4bHHHuv6xuyWdMNEX0i2pmninnvuQV9fX7Td7WyOCKdRDAwMwDRN3H333QAQVYDUajUUi0VMTk7C8zxomtZAFoVCIVp59Aq3W15oPpf1jGEKydgwDEgpcerUqUSRcScy7tWKolvSPXz4cE+Oe6uQku4a0amhoZulfRyO42B0dBTLy8u4++67ceLEiTXfSN2QLqCqESYnJ5HJZHDmzBkUCoWW+7zdJV/NBKVpGvr6+hoeDoC6UUPvhMXFRYyPj8P3fei6Dsuy4DhOZISeZOXQChuVSEuCW7GUX49METZ99EKmYIzBsqxE26aR7h2I5gkNrfTabklXCIFXX30VlUoFR44cwenTpzveiEkz3qtBSombN29ifHwchmHg3LlzK8xfmve5ma0d49B1Hf39/Suy2EEQREm7+fl5VKtVMMZgGEaDRNFcY9wKvYp0b7Xu2evzSULG4efaC5kirPdNgnK5nJLunYJ2ExpaISnpViqVyITm5MmTOHv27Ko3cbjvpBdhK8SbKQqFAg4cOBCZvHTCZvFeWA8Mw0BfXx9yuRxOnjwZvR6WtdVqNczMzKBWqzXUGMfL2npZY7yZI91uESfjgYEBFItFnD9/PiLjUAZqFRnHh5I2H78beaFcLqeJtK2MeEPD0NAQdu3ahf7+/sTE2A6lUgnDw8MQQuDo0aOwbXvFGO926FY2iENKifn5eYyMjKCvry9qppienl4xhaAVekGat5t0252DaZrYsWMHduzY0bCd53nRMnpiYqKBLFzXxfz8fFc1xs3oFVn2ShtOkpBLAsZYS5licHAw2qb5852cnEStVos+37C0zXGcxO+tVCo11IlvRqSk2wKtGhqCIABjLNGXr2naivZGQFUEjIyMgFKKo0ePRsugbrq01kK6UkrMzc1hdHQUAwMDeOCBB5DNZrve53pv6s1UY5vkXAghyGQyyGQyK8jCdV1cvXoVrutGcgXQ6LcbNiWsVypKAillz+SFXuwnyfXc6fONk3G1WsWbb74JAA0rj/BP/DipprvFEJZ9ha5P8RrbkBiTIB4phLrp6OgoTNPEqVOnViR9uvHJ7UYvllJiZmYmmjbbqnMtPN9eWgO2w1a3dgwRRm66rkdVFEDnGW1h1BbqxmGNcS9lgaTJptX2sx7pqhf7aSbjxcVF3HvvvdB1vYGMp6amosh4fn4e//Zv/wYhBF5++WWcPn16VbmsHZaWlvDJT34SY2NjuPvuu/GNb3yjbfRcLpdx5swZfPSjH8WXvvSlRPtPSRetTcObNVtd11tGr532GUaX+XweZ8+ebXsRrDZap3nb1QgyJNtarYbl5eW2ZBtio7TWzWLt2Et/gTg6TaII9cxSqYTp6Wm4rhs5bQHKkatQKMA0zTWdWy9lio2KdJMi1HQ7RcaLi4vwPA+XLl3Cl7/8Zbz55pt43/vehz/4gz/o+nhPPvkk3v/+9+OJJ57Ak08+iSeffBJ/9Ed/1HLb3/u938O73/3urvb/jibdVmTb7sJtJxk0QwiB2dnZqLX1/vvvb1jKt9t3UtLttK0QAjMzM7hx4wYGBweRy+Vwzz33rHoTr1cnXlhYwOTkZLS0Xo/GeScirDEuFArYs2dP9DrnHFNTU1heXm5bYxxGxu3avUNshkTardhPiNUsNHfu3ImPfexj+LM/+zP8zd/8zbqO9e1vfxv/9V//BQD4+Z//ebz3ve9tSbovvPAC5ubm8MEPfhCXL19OvP93JOmGmtHi4mI0SWG1CzZc2rSDEAJTU1MYHx/Hzp07I4vFJFiL6U3zsUMDnJ07d0aeDEtLS4miurXqxDdv3sTw8DDy+TwOHToUVQDENc74sjo060mhEI756e/vb5ApGGMNjmJjY2ORQ1tzWVtYY9yrRNpmjHSTwnXdyGVvPZibm4vmEO7duxdzc3MrthFC4Dd/8zfxt3/7t/iP//iPrvb/jiLdeEOD7/sYHR1tqDPsBF3XUavVVrwe+tZOTk5i9+7dePjhh2GaJhYXFxNHH92SbrhtnOhbGeCEZLraOXTT9NDs3Xvu3Dlks9loYkD882xeVpdKpagsq9tIrpe4VfLCWtCKLHVdx8DAwIrSpyAIos9vbm4OtVoNjDGYphk1fmiaFk1qWAt6Vb1wO0h3eXk5sbvYBz7wAczOzq54/Qtf+ELD/7crDf3yl7+MD33oQzhw4EDX5/mOIN1WDQ2maXal0TYTI2MM4+PjmJ6exv79+/Hoo482XOhh4i0p6XaTSAuPPTExgT179rQ1wOnFRIgQoW5m2zZmZ2dx3333RVFFO8JuXlZXKhVMTk7ixIkTDfPEwkgu3qAQ/t3qxr3dibReopv2XcMwsH379pbWma+//nq04onXGMcj4yQ1xr2UF3rxIO0mgu+mcqFTdLpnzx7MzMxg3759mJmZwe7du1dsc+nSJTz99NP48pe/jGq1Ct/3USgU8OSTT6567DuadDs1NHSb1AkTab7v48aNG5ifn8eBAwfw2GOPtbxIQ5JO0mKaNNLlnEftugcPHlzVbawXU35DP4ahoSFks1lkMhncd999LbdLenO0i+TiDQrxzHQmk4nIIwiCO4501xN1h9aZhmFg//79DQ/CeKa/2d6xuawtJP5eacOMsZ4s9bv1XehFY8RHPvIRfO1rX8MTTzyBr33ta/jpn/7pFdv83d/9XfTvr371q7h8+XIiwgXuQNJtN6FhvctJzjmWlpbw/PPPJzKhWatk0O7YExMTmJqaQiaTwZEjRxKZeqx34OTi4iKGh4dhWRbOnj2LQqGAZ555ZtX9tcNqD7p2DQqu60ZkvLi4CMdxsLS01OAuVigUErmLhfvcTPJCr60dgc41sK2mUACqxrharaJYLGJgYGDVGuNO6KWXbtL9LC8v96RG94knnsAnPvEJfOUrX8Hhw4fxjW98AwBw+fJl/Pmf/zn++q//el37v2NId7UJDWtFaEJTLBahaVpix69eVCTEfXRDCWNmZiZxpJdUtmiWF+JOY+3Mb1phNTJbS8lYvJtp165dKBQKKJfLuPvuuyNDm1KphKmpqYbMf5yM12posxHY6DbgTtaZjuPglVdegW3b0Xw2QsiKZoQkPsa9lCk22tZxcHAQ//mf/7ni9QsXLrQk3E9/+tP49Kc/nXj/W5504w0NV69exblz57oi23YXfa1Ww8jICGq1Go4cOYITJ07gypUriaOSbkk3PoIk1GxnZmYiH93wAtY0LVHLLtC9vFAsFjE0NATDMHD69Om2ZNv8mYWfdxJC7ZU0ENeL4wgz/9VqFQsLCxgdHY2STSEJh6uhzYBbFel2i7DGWNM0HD16NPp+w2Ro+HCL1xi3SoaGv9frqRFJsBXMboAtTLqtamxDk+2kX1Ko08YjoXC6re/7OHLkCHbu3BkRSjfOYUnresNtOecIggDj4+OYnZ3FgQMHGsg2RLc+uUmNd0qlEsbGxlZ46DYj/CzWEp1txJK+lV4cJptCMi4Wi6hUKnjuuecaaoubRwNtBDab4Q3Q+D21e7hxzhv04tA6U9M0FAoFVKtVVKtVGIaxroRat5puWOq1mbHlSLdTQ4NhGFE9YxLESXd5eRkjIyORCU1cVwS6J4xu2obDyoD5+XkcPHiwJdmG6NUYHkBpYENDQ5H+d/78+VX3mbQMrd353I424DDZZFkWduzYgf7+fszPz+PEiRMrRgPZtt2wpA4JZ62dYquhl6PTN1Kn1jStpXVmuNJYWlpCsVjE9PR0VJnSHBknuU/vtKkRwBYk3TAibNXQ0G2rrqZpWFxcxMzMDDRNw7Fjx3pmC5eEHMNKiJmZGWQyGTzyyCOJamq7KS9rtW2pVIrI9uTJkygUCnj22WcT7XM9xLnZ2oDb6ZudplHEteJePUB6RZabITkYrjTCMU/h9RyuNGq1WtSx2Sz7tDKw6UamSEn3FiGcd98KYaS7GsJuqqWlJfi+v+qSei3oRLq+72NsbAwLCws4fPgwzp07h4mJiUQRz3pmn8XJ9vjx49EDphuNczN44t5qtJtGEQRBRBxzc3NwHAfPPffcujx3ezmuZ7Mhfj2bpgnTNFvWGMcNbGzbBuc88tl1HAd9fX2JVgQp6d4GrBbpxk1o+vr6sHv3buzevbsrwk0ambRKeIWzzxYXF3H48GEcP34clNKomD0J1tIyXC6XMTQ0BCllA9mG6OamX49Pw1YnbMMwsG3bNmzbtg1CCFQqFTz00EMN9cVxz91sNhvJE6Fe3PxZ92owZS/Qy+8myb6aZZ/474YTKEqlEpaWlrCwsNBQY9xKgy+Xy5veSxd4h5BuaEITWhyGfrIjIyNr6kpLojHF24Y9z8Po6CiWlpZwd4vZZ+v1XmgH3/cxOzsLy7Jw7NixnkQBt1te6AV6OdssThyt6mHDhNLs7GzL6cXdXH+dsNmScetBvExwcXER+/btQ39/f0ONcajBO46DhYUFfOUrX8HNmzfx9NNP48EHH8SRI0fW9F6S2jqOj4/jM5/5DCYmJkAIwVNPPdXgn9EJW450O11czfJCswnNQw891OA52q0GHG6fhHTDSPfatWsoFos4cuQITp061fL8e+2nW6lUMDQ0hGq1it27dycaBZ8UrRopbNvG6OhotCxvF9XdKX66SRDXi+MI9eKwiqJYLKJUKjW07HaTaOolelXm1cvvp3kCRSsN3vd97N27F5/97Gfxyiuv4Otf/zoOHz6MP/3TP+36eEltHT/1qU/hd3/3d/H444+jWq12RfBbjnQ7IXQCCzu4JicnsXfv3rbtsqs5hzUjaUTqOA7Gx8dRLBZx5syZVe0VexXphuVuQRDg+PHjXckWSRGviHAcB8PDw6hWqzh06BCEECuiungFQC9MtjdDsghYe7TcrBf7vo9Dhw7BsqxIopidnUW1Wm2Y0RZ+hq0sM3tFcr0k3V5FzEmCHNM0cf78eVBK8fu///vrukaS2Dq+/vrrYIzh8ccfB4DEzUMhthzprtbxtLCw0NBU0OkLa+cc1mn7TpFxGPGVy2Xs27cPlFLs3bt31f0mMZwJ0Yqgq9UqhoaGIrINl0OO4yRKLHaDsB56YmICy8vLOHbsGM6ePRt1AsbNQcJazrBRoVKpoFKp4OrVqxGJ3A7v3c04Or2dmU3on9BsmdnsXdwL9NJ3odcG5kmx3u8kia3jW2+9hW3btuFnfuZnMDo6ig984AN48sknE7/nLUe6wMplarz0yjTNtiY0zVhLiVmr7W3bxsjICKrVKo4ePYozZ87AcRwUi8XE7ycp4pFutVrF8PAwPM/D8ePHV9QW93oMj+/7KJfLKJVKOHHiRKIIPl7LyTnHiy++iNOnT0daZ7P37lq8FG4HejnbrN1+2vknxMcCVSoVTE9Pw7ZtXL58eUULdDeNCbejdXc1JH0QuK6beCW1XltHxhiefvppvPjiizh06BA++clP4qtf/Sp+8Rd/MdHxtyTphnBdt6Ea4Pz58xgeHk7+xFmDphuPMsNWYdu2cfTo0YYR6t3uOykIIWCM4eWXX4brujh27FjDDRlHr0g3CAKMjY1hfn4epmnixIkT68oSt0o8Nbebhl4KcePuQqHQc7lkrbidnWTxFtzdu3dH1o733XdfQ1R848aNBvPzeC1sK1LcbNMnQiT5nLtxGFuvreOBAwfwwAMP4OjRowCAj370o/if//mfO5t0w8gyND4JE1S+73e1nF5rIq1arWJkZASO40Sk13xhdKPTJkWtVsPw8DBc18WZM2eiqRft0C3pNhMJYww3btzA7Oxs5Kz2xhtvrPn8VzvXVu2mcePumZkZlEol+L4P27YbJIpuHLE2k7zQi/2EZNmuSyzeAh3OzovXwoYPtF7JArfDwLxXNbpJbB0ffvhhLC8vY2FhAbt27cJ3v/tdXLhwIfExtiTpTk1NYdeuXThz5kzDBbtWEk2KIAgwMzMDXddx7NixjqTXy6W9bdsYHh6Gbds4duwYKpVK2+h2recQ91SIJyKbPSA2umSsWetcWlrCzZs3cfDgwUiiCNt344m7tSyvu8Fm8kxYbR/tGhPCWtgwMi6Xy+Ccw3XdlpOLk+J2VEGUy+WedJMmsXXUNA1//Md/jPe///2QUuKhhx7CL/3SLyU+xpYk3ZMnT7Ykk27GzgDJSTesCqhWq9i+fTvOnj276u+s5YZsvpHDiL5Wq+Ho0aOR+c5bb72VaH9rMceZnJzExMQE9u3b1zIRud7miPUi1Nnido8h4om7+PI63moazmpbLzZjpNsN4p9hOGJpdnYWnudhcHBwxeTiboZl9op0u3lfy8vLPSHdpLaOjz/+OF5++eU1HWNLkm6vkiurkXS5XMbw8DA45zh27FiUSLoViDdexEuxjh07FpFtt0hKkEII+L6PZ599Fnv37l0xeiiOzdLg0AqdltdhVDwxMYFSqRTVy8a1zm4iul5GureDdFshvP5aTS5mjEWa+2ojlnolU9yJZjfAFiXdW41SqYTh4WFIKRs6uRYXF29ZIkfTNNi2jYmJCVQqlRWJubVgNdKVUmJ2dhajo6MQQuChhx5ateawHelu1ioDYOVEirB8bc+ePSt8YkNTmziRtLrxN5NRTS89eduRnK7rHR9o8RFLnufBMAwwxlqOBEqKbki3V1MjNgJbknRXS8isdXmzvLyM4eFhEEJaOo6tpSIhyc0ZamuvvPIKTpw4sUKrbkZY17tWRzIpJebn5zEyMoJt27bhoYcewmuvvZboAu91GdrtQty+sTmii0/cDVc6YdIpJOReRfu3S15ohbAZoxu0GrE0NjYWjZcPh486jgOgu7LAbg3Mjx8/3tW53y5sSdLthJAYuyHdpaUljIyMQNM0nDhxou0Y524rEkKCancurutiZGQEpVIJmUwGZ86cSWS+081o9ThBhu5qw8PD6Ovrw/nz55HJZAAkb9DYDPLCeo/fieh0XY9MbeLbx5NOCwsLqFarCIIAr7/+ekMVxUaOkg+xWaZPxPdTKBSwc+fOFSOBuhmxdCfaOgJ3IOmG/gtJntjhhNSxsTGcOnVqVcJbSzNFqwvHdV2Mjo5ieXkZR44cwenTp/Haa6913ZW2WhQQJ93FxUUMDQ0hl8vh3LlzK7qYuhnX3o70NsJI+3bIGK2STuVyGVNTUzhw4MCKxF3SUfLhvteLzVZf224/3Y5YAg7/KJ8AACAASURBVNS1PjMz09JrN46tMqoH2KKk2+lCTWLvGA5etCwL/f39OH36NLLZ7KrH7WYET7h9PDL2PA8jIyMoFos4evRoQ0fXrXAaC2evPf/88zAMI5ro226fSSLIO0VeWC9Cf4FWvrvtRsnncrkGiSJcZawXvYxQb0edbrsRSxMTE1Ere/xzbLZ3NE2zZ+PXNwJbknQ7Qdf1lg0S4Uic4eFhZLPZaMrtyy+/nJhIuxnBA7xNpHFrxyNHjrRsn+3F9OA4yuUyrl+/DsdxcO7cuVWj+PXIC7VaDUNDQ2CMoVAoRE5j3dZ3bhRudXNEu1Hy4TSKSqWCmZkZuK4L27bxxhtvNCTvup1e3MtId7N4L4SfbX9/f8Pcs2Z7x/Hxcfzqr/4qqtUqPv/5z+PRRx/FI488gve85z1dHzOpreNv//Zv45//+Z8hhMDjjz+OL37xi11dT1uSdFezd4yTaFzHzOfzuPfee5HP56OfdyMZdHujEkIwPDyMWq3W0DnXCt3YO3aKNqvVKq5fvw7OOU6cOIHXXnutK524m+1c141K244cOQJd12HbdkM1QLwEqZcJqNuNbok7nriLt5Y+++yz2LdvX9TkUa1WwRhbYfXYyRRoM8oLvfBe4JyvWIE22zseOXIEly9fxo/92I/ht37rtzA0NISRkZE1kW4SW8dnnnkGP/zhD6Ma3Xe96134/ve/j/e+972Jj7MlSbcTQhKVUmJhYQEjIyMoFAotdcz49r2E7/sYHR3FzZs3cdddd0Vj4Tsh6eReoHWkG28RXos3QjeabhAEePPNN7G0tBQZ/ITDQguFQgOphG281Wo1Gsfy3HPPRVnsuO1jEhLbLA0JvdKvCSEtl9ae53U0BYon7rqZgN0Jm428u6leCIIAjz76KC5evLjm4yWxdSSEwHVd+L4PKSWCIGiofkmCO5J0FxYWMDk5if7+/rZkG9++V6Qbzj67efMmDh8+jAMHDmDbtm2Jx/usRdMNGylqtVrkNLYWMkhSlcAYw/z8PJaXl3Hy5EmcPHkyOla7Yza38VarVVy4cKGjuU18qd3q5t0M0XIvSbfVa6G7WJi4Axqz/8ViERMTE/B9P6qHDasGOiWcOuFWJ9K6RVLS7dX1kMTW8bHHHsP73vc+7Nu3D1JK/Pqv/zpOnz7d1XG2JOm2ulDD+WdDQ0PQdR3nz59PlBzrRe1t3IXr8OHDuHjxIiilGBkZ6Sp6TWrWQymF53l4/fXXUSqVcOzYMezateuWNVIIITA+Po6pqSn09/fj0KFDuOuuu9Z8rHY1ss1RcTwBFZcn7hTS7fZ9tMv+X79+PSqxak44xSWK1UyBejmupxcPpG614STHXK+t49DQEK5du4bJyUkAqh346aefxo/+6I8mPs8tSbrA25FZvKtq+/btuOeee3Dz5s1EhAusfXpEmLCLk+1jjz225tlnmqbBdd1Vt/N9H0tLS5iZmcGpU6dw+vTpnlzgrUhXSompqSncuHEjag9eXFxEpVJZ9/FaoZ2RdzwqXl5ehm3bK1zGuonuNqK0LQl6NQmYEIL+/v4Vibt4wimcXtw8zSOsiQ1/ZzPMSAuRVBsOy/SSYL22jv/0T/+EixcvRg++n/iJn8ClS5feGaQrhMDMzAzGxsawY8cOPPjgg8hkMlHRelKsZXqE67qYnZ3F3NxcZHnY6mLtpsRstURaSPALCwvI5/M4ePBgoqkUSREvGQtXDSMjIxgcHGwYd7TRzRHNUXGpVMLs7CyOHj26alR8K43QexXp3qqmhuaEU4jmaR5hTaxpmtF1fTumebRCUnmhVCq1bWjqBklsHQ8dOoS/+qu/wu/8zu9ASonvf//7+I3f+I2ujrNlSffVV1+FaZo9GzaZBIwxOI6DF198sWVk22rfSaPodom0Zk/bixcvYnJycl0+ua0QlozdvHkTQ0ND6O/vjx5kzdtthuV9q6g4nKiwmla8WVzGboc9ZCtTICklfN/HlStX4HneisRd85y7Tufc6zHuSd5Xr7rRktg6fvzjH8d3v/td3HfffSCE4IMf/CB+6qd+quX+iPqgngbwBSnlv9Rf+9ktS7rnzp1r+QU3TwReDUlIN058uq7j1KlTiaoD1lN7yzmPdNSDBw82EHw3lQ5xn9xOcF0XExMTGBgY6Jh8vN3NEZ1IPz5RoZNWXCwWIaVEqVRac1S8mTwT1rsfQtQYeV3Xcfjw4Yb9tkt4xok4Ponidoxx71VjRBJbR03T8Bd/8ReJ9iellISQXwXwTULI96CC3D/csqTbjni6JYVOpMsYw/j4OGZmZiIz77feeivx03wtpCuEiDxt9+/f33LeG6W0q6RbpxuhUqlETRR79uzByZMnO+5vs0S63aA5Kp6engbnHDt27FhXBcVWjHS7QadpHu0mUWSz2UjCyOVyG6Kdb2aHMSnlq4SQ/xfA/wUgD+D/3rKk2w7dfsmtSDdOtuFU4fDG60aO6LYMrFqt4tKlS6t62vaiZdi2bQwNDUV1vbZtJyLyrUi6zZBSImAC0AxkCgOgVgGZAQYmBBzHw3K1ivHxBZSro7BtGx4T0HQD2UwGguowTDUu3XZ95N9cAAHAhIDtBbhw4gAeOXUQlK5+HW6WSDfcR9J7xzCMtqZAS0tLWFxcxOjo6LqmeXRzjZVKpXXN7NsA/D6AKwB8ABfuONLtFnESDZf009PTK8g2RLfJsdW2lVJiZmYGIyMjEELgscceWzUT2+1EiPi2nudheHg4ssIL57u5rtt1R1p4/gHj8AIG23HBhPp/xgUCzhAwgYALcC7gM45XJpbgZkbhBgwB4yCEoOb6CDiHRgiqro+ACWgagesx1Dwfpq6BcYFi1QGEgOvUwL77FjKmjoyhY6Fcg6nryFo6Fks2qEaQtwwUqw6kBPIZC6WaAyEkclkTS8tlCCGxfaAPQcAhIaFTCi4lNErAuAABYBo6bNeHBJAxNFRsV3WL6QSOF4BJiYFcBiAamJAo5DK4/OYk/uKpZ/HIPQfxnvuO4PTB3W3JbDNFur2QKLLZLAYGBlAqlXDmzBkAbyfuarVaS1Og8E8ul2u417q1dexFIu1WQUpZI4T8I4CqlNLbsqTbC79Z4G0SGRsbw9TUFPbv39+SbEN047/Qadt4hUBYffHKK69AgqDmeGBCwq8TU8AF/ICDCUVmi0tFzC3cxJynKzLjHH7AwYUA4wKuzyABcC5wfWQMP7hRBSEU49Oz8F0XO3Zsh80A640idE3DzVINRDBwzhHgCvIZE4BEqeYiZ5kQUqBse8haBjzPx1KpgsHtr4JzAccPkDE0SBAwzkFAQIj6DnidnA1Ng88YuJDw3Rr+881FCCGRz1rwGIMfcPRnLXiMw/cZ+nIWfM7hegEKOQsBE/B8hpylwwsCVGo2BrcNYLkKCCmBesJluUoQMA5KAN9XD4IwXpIAuOBgAYOha/ADBiEEDJ3C9gJoGoGpaai6Hkxdg2noqDkBKCXImYZ63TSxrS+vPmvpoKBTgFJwLiA4Q3G5BJ0SBAL49+cqeOaVEei6jsfOHMaHHrkHB3Y26o69KhnrBeneqsaIpNM8bNtuqD6Jl7Gt9hmVSiUcOnRo3ed+iyHqf7Zu9UInhNHrassYxhi+f/kVvD48gxmHYPuOnXhr0ccb89fVUtMPAEj4TMCp35gLN5dQrjnYt3sctuejbLvoy2VQsV3U3ADb+7JYrrrgnCOfMTAyMY3BZ24ga6rIS6cUnAeYvVlE1jJRKORhe8Mw9StYLBaR/7c3YWgaJIDwUhNSQtcoAsYhAehEYrlcQ6Ewipxloep60DSKnGWiUnNhGCoCrDguXMeGNb2MUtXGQF8euWwWU+OLMHUKSig8xmHoFIEfIGABstkcKo4LjVAwzlFzfZiGBi9gcLwAlqEeUjXXQyFrQWMEHucoWBYCFoAJif5cBjXXBxMCfVkLtuuDC4lCxkK1UoZpSeQypiJFKZE1dXgBA6UEuqHB8RlMQ4NGKRwvQM4y4fsMPhOwDANVEPiMoy9rouIEgJTIZXRUHV+Red5E1fbBIVCwLNheACkl8hkLAePgXMI0dHAhAUqg6xSCA6AABQXnEsQAAAkpoM6rXtJHKQUhHEIK6LoBoumQ4BjI5SCFgBswZKgin1LVBoHEv1x6Cf/8zMvYt6OAB47uw4cvnsX+XTtuaclYt+hlF1mS/bQyBYpXnxSLRdi2jeeffz6a5hFP3sWj4OXlZZw7d27d575R2LKkm8TesdPgvMnJSUxOTmL/zt24ppsYX2b4l6tXUXE85DIWHNcHoUDWNFFzPRiaBsPQUSyXoQEYX3JgewGylgHOBQLOkTUNTC+VQaEi6NmiQNXxQco2BCQk5yhVKjA0A/39/fDrUayha3D8ABolsHQdbhCgL2fB8zl8xtCXteB4AbjgyGcslGtKCsiYJmzPh04pdE2D4wUwDA0EgOsH4EEA1/WhUQ27dmyHz1VklTF0eCxAIWNAAggYQ8bQ4QcBGOfR8QIuUMhacDxfRSEZE47jAwCypgHXZ6CEQDCOuYVFUAowIeG5DizTAOMSDqXIWgaqToBAqM9ISiDgAhlDR9X1oGsEpqGh6niwDB26rsH2fGgahUHVv3WDwtA0eL563dQ1eIGKakEJvIBB0wi4VKsC01BELoRE1jRg+4qQdV0DFxy6psPUNdRcH4ahvx3x6irirbkBNI2q78NXxJ4xDfj16NnQNfhMIKtTECIQMAZT11VITSj6chYkUeefyxoo1zzcrAT4wbVJ/OuVIeztz+Ds/m04d3AbstkbDV4K3Ua/m6mSYj1mN/HqE8uyQCnFyZMnG/x2m6d5/OM//iMmJydx7ty5riSJZnzzm9/E5z//eVy7dg3PPfdc25Hq//qv/4rPfe5z4JzjM5/5DJ544omuj7VlSbcT2pWNxSsD4smq4uICHnvsMQDA9amb+N7VIVybmMfCchW258MydHgBB5cBspaJSs1BDhL5jAHbC1DIWNAohcsYChkLnh8gYAz5jIXlkoTn++DMg88k+goFZCwVcRm6DiEAEAlT11FjAiCArlFUbR8ZSwflFDU3QC5joOZKeEGdFB0bjCsirLk+dClhGRpqjgdIDttxIKEhn8so57U6aQR1CcDQdbgBg6FRCKrB9n3olICAoOaqhwlzPXhBgFzGRNX2wJhENmOgVpMQUoBC4ubyMjKmgR3b+uEGHLpGIaWA7fqgkLBrVVQqEpQQcKaDcQHLFBBCgEsKSin8QIBSFdkGXMA0dOiUggmBnGWACVWpYlgmPF99j6auw/Z9MF6Ppv1AeRBkLPhcAFKROhMClBCYugYuBHSqgRKiEmkAQADOGDK6Vb9GJHRLg8Y4pJTQdYqAKanE0DU4bgCfM5gahc8kbNdHIWvCZxxuECBjGarulXEYmgZNowiYUNGyZcA0dGQlRdGX+J8bJfz39XncvXsRj57YhSM7suBspd6Zz+dXJcT1ku5m9l1o57frOA7uv/9+XL16Ff/wD/+AL37xizh8+DC+9a1vdX28e++9F9/61rfwK7/yK2234Zzj137t1/Dv//7vOHDgAB5++GF85CMfifTrTpBSfj789x1Jus0VBu3Itnl7wzBw8sAunDygOniWqw5++Noo/vuVUUwtLIMQAttVEamQAK/f/G4QQNc0GJSiWtc+uQBKNRsGlXBcF335PHZss1BzVaSYMXXUHA/5rAUhJBw/gK7Tui4rkbUU0RNKYGgaHE8RJCEqqtM1Ci4FvEDC0KiKOqkiOVANO3fsAOMCpXIFfXkdHARBwJDPmXDcAEKqJb7jBZASsEwdpYqHgpWJom2datDqUaSha5AQ4FxptjcXS7BMDf19fSCEQtd1aEKAC4F8xgKhFIwL7Mj2w/Z8MMZh6RoW3RK47cLSgDKTIJQgn8nAdlSklTENeD4DCIGl6fX3RSChwfXUOUkJuEEAS9fBeQC/vsqwhYSQQNbUUHVURGwZulqp6Fq0oiBEfaa250PXKExNPYBCcvb8t6cW+AEHIUpi8HwVTVNBEXAOU6fghEBIqb5PV0XEYQStabQeNfuglETbSCmQsyxUbAcBk7hZ8/DtK+PIWSZO7N+JH7t/H3bsyKFWq2FiYiLqmGzlMNarkqzN6DDWaT9hx90nPvEJfPOb38Rf/uVf4uDBg2seHJvEtOa5557D8ePHcfToUQDAz/3cz+Hb3/52ItKNY8uSbhJPXSEEpqamMD4+jj179jS0s8YRJ904thWy+PCjZ/DhR8+AC4GXRmbw/atv4ZlXhkAJQKkOx1MkG3ABxjgypgHb9eA4DjQCMAEM7hiAkFCRpaGSOLqmwTJVpJyzDJiGhkpFIGMYkNJHEHAU6lEs51xFuo4LnWowDA1BoLL9AGC7HgJP6bp9/QMqYmTq4teoBtsNkM9nwbiA7QbIGGq57Qf18/V8SCGR0TVVqkMUcTheAMs0wZiAx5UEUSyV4fk+dg3ugKQUUgKmrsENFFHpmiI2Q6PgQqrqA03pp4IoUtVMCxnLQD+hqDoOQCTAGSq2D1cjqupDEOQzJqiuww8YMqYOzgE3UCsPgCDgSo+W9Qcg1VTlgUY1EKJ0X51SEKhI1TJ0EABCArpOIYmqWDB0ioAzSEgYhvq8lCyh3gtjXCX9ApUMzJg6qjUfjChtWEgJLmQkr+hSkT/qiUQJCQmAEqJKySSFrmvQCMChEo0BF1iuOnhjYh4vjU6jL2vhwokDeP+Dx3HmzPa2DmOGYcB1XczMzCSOiluhl5Futybs7fbTTfVCWDLWi/fQDmGjUogDBw7g2Wef7Xo/W5Z0O0HTtMhxbPfu3W3JNkSS2luNUjx4/C6cOTCIdx/px/67T+AHr43i6tA0RmcXkdF1uFJiqbgMU6fIZbOgug5SKyPg9SWuRuEEDHqdLLmQkTapaRQaJTE5g6Hm+MhYBhwvgOczZCwLrhfApASWocHxfID5kJIgk82iP5+FGzAlO2QNuG4ACXUMt66R6poGjynSJ0TpuXq92UJICYMQuD5DzjKhUUW8WdNAueqgWmXY0d8HzjkI1eparQvBCbKmjqrjgeqAqWlw/QAapaAR+SmtmUsJS9MghATVJAzDBIRENpMBNVRHmKVTVG0XjufDCALUPB8OIchnM8ormXNkDA22F4CAIGtpUWlX1tJhewEg1WrCDRgIBUxdfaZq5aDOyTAoNFJfJRAKQTiCuuTiSwEmBExdRdbq4aJWAAREVSkwgYxFQAmJpBpKCGw/gK6p5JsbMFBK1T6ZisJ0rV49IVWk7zEGArUfxgU0QrFUcfDfr47iB6+NIZ8x8Z77juI9546u8NvwfR8vvPACgiBYV1R8u0b1tANjLPE4I9u2ExlcdXIYa+WzcKuwZUm31QUkhMD09DTGxsaQz+dXJdsQa2l42DfYj5999/342Xffj2KpjH/63nN4dWwOhtYPj0lVXuUz+IHAjowBxwkgNSCfMeG4PiyNQgLwfaa2ZVwRkq6W1ICEZagkjq7RtwlSo3DrmjEXEmYmi235LHwWRFGzLQK134wJ23HApUA+l4Xt+iA6YOgUrseQtUwwwcEZg2XqcFwHppTIGIZKHgFggY+5chm5bBaFfAECqpaVCwk/CGDqGoJAQNcpDF1DwDisjA5D11Tkn7UgfQYmJPKWgbIEOFefTyhtZEwtSsqZhq72YSmdXEr1HoWUkIKDQsJlHDeXlsCFBCEaBLcAQiDq14VZPw9DV+SuImIN3BcQTNXkBlwgYCoxGUawWVNpwIBU5y+EipQJ4HMOU1dkEjBF3kSoMjTDNABf5dBMQ4fHlG5uGhpsl4MSWf83i+QH2wvAhNKdfcajhwTjAgKAZSgNWhKCpYqN//3Mq/iXy2+gL5vBj50/hvfffwz5rAXTNKHrekPJVKeouJ1W3KtRPbfLSzfJuXdyGEuCu+66CxMTE9H/T05OrsnidMuSLvB2d1ToOHbjxg3s3LkTJ0+eRK1WS7zM6ZZ0w23jI9R/6v+4H//rp5Xh9PWpm/jeS0N4c3wB5UoZNUdFrz7jMIRawrr1ulNdp3CCAHnLgk4JfMZQyKqqBC6lIlE3gGkoAloulaATtaQuFAowDQOeH4BSCl0DHL+u93IJz1dRrBcwZOqJIK9OxrpGoySZFAJ+vZqAEgImOCA4lstl5LNZ7BzcoSI8QpQSINSSXAipEn+GBi8Q0ChRcobnwzR0SAi4fqAIzwtUVYFOAaKaJTKmDtdXhGOZelSNoGsEvs9hGToCJsA4R84y4DJAM0zkCIWVzaqsPSR8n0EIBsYY7JoNw1AJSs44LEtdA56vdGnOJTgTMAwNkmhKjzV0OIF60BmaBjcIoOkaNELh+UxFuwA8P4BRXyG4HodGNVDydqIsrMoAVJkf50JFs5JACkDFCUoT1zQKnRBoGgXV1ENC1yiYkCozbxjwmYAfMFiGAS5Vx5vPOL753y/jf//wNRzZuwM/eu/dsHhjU0u79t3m2th4VByOxvE8L9Ek7XZYTwVBHN2S90a0Gz/88MO4fv06RkdHcdddd+HrX/86/v7v/77r/Wxp0pVSRpHt4OAgLly4ANM0sbS0hFKplHg/3ZBu2EzxxhtvRONqmj1t48m47//wEhZ4FleGpjGzWIbPOESdtFxfaZIaIag6Xr2aQcL1GSxTRZuME5gGRbFUgUYECvkciKaD1irK+Jxz5CwTNU8l+ExdEbqhqSe/gNIMGVPlYrqmwfMD6LoGyVSVgWXoYJ6nEnQGx3KpilzGwq7BQfhMQNcoMtJAIDhyphEtg/OWAdtX+qeKlP16MkpXSSdKQEHAmKpOEEIowiYafMZhGuqmcpkiVQLV5JGxjIhsLVNXyUUpkTNNVBgHgzqe6wXQdR1GXTrI53NRh5zkHFxwVKpevYNORdGo67uZ+kojYByaqavf4xIZg6htuIrAA8IhoCo/mMMBSFi6gaqQILqKZh0/UB1s9fIy9W8Kn7F6Z5uSdKSU0CitXwMCEqqZw9R0kHonHCUEWj05p1MCTikIBXQoQjY0AoDC8QMMTd/EyOwiyuUy3jPL8K5778b5Y/u7GpgZRsU3btyAbdu4du3aqlFxJ2x0pNuLIZiA8sn97Gc/i4WFBXz4wx/GAw88gO985zuYnp7GZz7zGTz11FPQdR1f+tKX8OM//uPgnOMXfuEXcPbs2a6PtaVJ96WXXkImk4nINsStcBoDlNFH2FPe39/fcdBkiIF8FhdOnMDH3/2ASsYNT+PpV0bw2tgcXJ/B50xVDxg6alWOTBYAUbKDRgiWyxVIzmFlLeiGWa+n5fCYwA5Tr0c/DDnLgOP5kJQgaylCymVMeJ5KOPXXSVxCRXa2z6DVy9PCJoWAMTieh4GBgXpnmYrKbC9A1tQRCBLJHQDgMYGMqWQCCFnXogNomg4LGrx6YtEPGJhU5V+VqgSXAjnTquujaint1eUFVULGImKnRIAQgIVJMaLkCVp39udcqERm/WGWsQyVxNJ19Bm6OjeKehWBoxofhEC5oqI8yzTg+zooVQ+/gKvjSUgV8dePJ7isd9lJVXMNqE44orRYKaG0YkoimYF7AQhRx7a5qOvCSkNWerEiYFVGp6J6KSU0jdZbkdV/Qf3BR6QE4xJ1lQMSEgQqaXr5rUm8MjYDAoJHTx3Eex84hmP7Ble9psOoONSAQ+/dTlFxOO25r69vRS38RpNur1qAP/axj+FjH/vYitf379+Pp556Kvr/D33oQ/jQhz60rmNtadJ94IEHWhpjrMVTt5Pvbdza8fDhw8jn89i/f3+ifcfNaTRK8eCJA3jwxAEAwMxiGT98bQzPvTmO6aVypOlZlML3XZSqNfQXCjDr04spJSrpRlU0VvMCGJq6KSUYNI1GkaKmq2SWaehg3FcVAJYBxw3AhZItXN+HFAJOrQomVLdXPp9X2rLxdulUGD1TjYBKWq8QIAg4AyU6KAG8gMM0KUh9SZ6pV3R4TFUeME/V1Jo6BYWShcIHCAUB1epRH9VVVChEpO+CqHPwA6YeBBQRSXMh6t1stL6kVxKFiiQVgXGhCNsyLAhdghgUBrdADR1ZXUPVdhEEPgTzo3K1bMaC6wEaJchmMvAYA0AaEmKkLt0Ioa5B9boE6tUUhKryBKWDU0ihSgA1TVOEKZW8QAAYlEIQCb8e3QeBgM8DZE1VA+zX67q5VF4WukYhBcAkB0AgpADjBI7H8L2XR3Dp2jgypmpB/sD5E9izvVFqaEZzIq1TVFypVFAsFjE+Ph75KIRE7Pt+z0b1JDUw36wOY+2wpUm3neNV8xj21dBuekTcACfuaTs+Pp64C6iTI9i+wX58/N3n8PF3n4PrM3zzO/+Na9NFvD62AMPUsXf3LgSBugn9QEVyYWUDpFAEECjNkdfPRzdopKMy1Du1qOrUCgJWL49S5GDXbDDOMbhtAExIlEpl5EwDNc8HZwI5y1TRs1TNGz4LYOi6KtHiqgTL54o0DZ3A89UDQUqlJ2uEgAmVsNLp29EbJQCrd6cFnCNgHNmMASEkmFRSg+35kCAwTVUrK4F6BKhIVUJppoaudFkpUV+6qyU6oai/d1qv61U1toIphzGqaaAgAFGVJgEzkLVMBJzD8wMVkbo+PM+FCHzVzQeKfC6jmui5gF6XBEJdmNW1VV1T5yGlVD4QgSJsxJoyCAllFwJKVHmdVu8sJIA6V6lK38KkpEYJiCQI6h13YfedWnkQ+IGAaaiyP59zuFWGf33+Tfzni0PY0ZfFY2fuxv/54An05VZqtkkSaZ204kqlgmq1Csdx8NJLLwHAirFASdzF4ueTJGLulZfuRmLLk24rdOMEBrRuppiYmFBtwi0McOJz0lZDEhtGKSWKiwu4Kw/c/9gJ3PO/fgqjc8t49o1xvDg0hfnlCjKRxiuQNQ2UANC61qhuQg0+5xBcaYh+wKOb2PN8ZOoZe40SOLaDZd/Htr4CiKaDSVJPfEl4jCkyDZS/gGEohy/LoBBSR8AlLINGzQ9ZU0XPqhSLXnCOFAAAIABJREFURg5hUipiNXVFRoQSaJSgxjkMgreJkBCwegcXrcsFgkrQuvdDTjfASF06MFWrsqhXGtQ8JSHFW3V1jYBxRXYAUbKEpupxiVCSBOMCpqbIyQtiiTKmmi9UOR1FPp+DySzVGCIBx/MASPCAI+AMtWoNRNchBaATCwIq2rYMRbqcc2RNU0XuUBUMnAlVs1v//AyiAZDqYVJ/QKiVhCJSUa//BSH1Wl8NIKIuxegIAg5KFTEH9YcMkaokTkXRqiRtrljDt595Ff/f/1zD3Xu340fOHMJ7zh2LKjLWIwuYponBwUEMDg5ifn4eDz/8sPLnqLfuxt3FTNNc4S7WjuyTBDUp6W4SrNVTN95M0cnTtlekK6WMxuNs27YN+/btw86dO2GaJk4d3I1TB3fjU49fwHLVwQ9eHcVLw9N4a+pm1AYb1CsApC7r/zbgen7kN+AFAQgkKFXkwwIfZcdFJpvBzh3bwYSsd3sBPmOgCDVNAkKVVGEZOhhEPbmntGIuVGQXasFKBmCwDEVeYWLN82VdttDhskDJCER13WmaqsaQ9YaBULcE6k0kugYR8KiRRCXWVBuvrKuZhqbKqmjdtIYxiZxpQApFcpapyFhI1fjh1qsjtHqLsVVvomBcdWNJISGI0muZEDCoWkGAqchSr7f1ZrMamODIZbLKJ8L1VN0tZ/ACDt9VDzsBCqar5CXnEhSAoAQ8UA8jAFF5HOMCgvHIWEdCgBKASwEp6mTMOHRdkTETIiqpg6zryuqiAqVxYq7LQRqFRlXScnR2CTfmivjH/3oZZw7vwY/eezcyPSoZC0EpRV9fH/r6+hpe9zwv0orjY4Gao+KkSOWFDUavykQ0TUOlUsGlS5e6aqZIUlrTTl8uFou4fv06stksHnjgAWSz2cjIoxnbCln85MUz+MmLqjPuxaEp/D//8QyWfR0lW5nLiIDBZxwZ04QXBBBSaaJ2wADBUK14ME0Lu3cP1j1k6xFxvbVV1m9knaq6W00jAEG9HViRlF93AmN1vVQ1PghkTVVbXKrYyJgmuAA4pXXTGaXJGpoOxpW8odW7xDJ19zJR72rzGQORANFUxEspUaRX75JT0bAiGdcP6j67SkvVKAUnPCKYcBmvU1rvVqPQuEriGToFV0W9qrLAV8t/U9ci7Vb56vL6uSoSDhNphAtIoXRbSzNgmCa0+r5cLwChFBQCNceDY7uQQumwpmkoXRYEUqjqBFlPCOo6jboMZRSNEzChVgyGpoFL1SKuUYBLqM8FquFESPV+Ve2yrDd0SBAAkqjXCKFQ1KxWEl4Q4OXRGbx2Yw52rYIfPVfC+x88iVMHd624BnsFy7JgWRYGB99O8rWKimu1Gq5evbpqVJyS7ibDarpr6Gk7PDyMIAjwIz/yI4l0p26NzONEWi6Xcf36dVBKcebMmYanehIpQqMUF04eBKkcx9mzZ1Gs+fj+y8N4dWwON+aWwAWPst8QArZdgwSwe+dgfckronI0DYBh1B8ghg6NUghZ12oDBqKRKKOv1296rW6K4/qKQLnPsFApgwDQDVVFEAQMVbtWX7oS+FQZ70Aq0srqGrh4W5P16tUKhqakDOV3yyMt2QsYCJH1Tq4g+k4VwUCVw9XLzwIuVMRNJHzG1D6FjCJpySQCKdVSmqjW3PDz0jQCTSgpwqyfl5QCpmHArT+o1Dky5cdAlJRBiLqWGFcROKSApuuwLJX8tOpVFOrRJuE6HkqeCwgOBgIIRchCKoI0DA0yUBovIVA+xaRefsfVQ4MIFfmquFdJEuF3xIWo6+YSIOLtxF49GpZCHac++1lVqPgMz705gRdGppEzTVy85xDee/8x3LUzeWXAWieKNEfFQgi88MILOH36dMeo+MaNG5iZmcHx48fXdNwQSRzGJiYm8KlPfQpzc3MghOCXf/mX8bnPfW5Nx7tjSbeTBCClxMLCAoaHhzEwMIAHH3wQV69eTSz0d2NkrmkaPM9DrVbD9evXwRjDiRMnWupQaxnDs2+wHz/3vvMAANdnuPT6GH7w8nVcfWscTALbBvpRrjrg4ZI/CCDrSRvOOSzDgOAqI2/qtN6qK2AY6jXLUHaFUsjI/FvWS6VK5SokZ7CyOWQsE1wICC6RzWbBmACIBJESjuejWqsh4BwsUF1loBQB1ZDPZdVyn6skkNqHIk6PcQACpkGjpBOpVz4oY3T1c13XI2JS+qhK2HEuoZF6NMg5NF2HlOrBY+q6khHqST7BlX+CImbVsKHVPYwpJSqxJaBc2YSq8TUMrb78V1aPAWcgkNCIFkXGAOoJNhXRGoaOLJS7WuA50ECVxCMkHNuFW6tB1zUwSZAxDFimOk8QCZ0ozZgSAqkRkHqFhKYpzZlSCYCCCQ6dKj04bLrgQtYd10J9W5Gu4BKcSCWtAKACKFYd/PuV6/jey8PYls/iXffejfedO4qBQudW216Z5oQ+KKtFxU899RS++93vwnEcfP3rX8eDDz6IL3zhC12vgJM4jOm6jj/5kz/Bgw8+iEqlgoceegiPP/5412Y3wBYn3dVMb4IgaCBdKSUWFxcxPDyMfD4fLevDnyVFNyVpnHPMzMxgfn4+Go/TDiFBJ0GrkT2B56Cfl/CT9+3Fb3zsXZguufiPy9dw+doIAqiMu0ao8n41DQS+mk5hmiqyDV3TfK4K9oVW1xwNA17gQ3ACy9QhxP/P3peHyVGV67+19Db7vk9mMvtkzyxZQL0R5V7xepUHEHBFFlkUCKIoEEVwITEoKshleRBQvMrPC6I8mAuCkqCQTDayMnvPvi+9b9VdVb8/qs9JdU8v1T2dkAx8Prn3IempPt1T9Z3vvN/7vp8Ih80CY1o6eJ0Jeo5X+Qoo7AguqIpjOQ5GkxGyJCMr6EfM8jpFzuwTYLHawMgSJLAw6HlFRMGy0PEGsAge4fU6RUkWTMzuIHtBMYoJJqEgfUzP8RDEACAHj+yiGDSDZyCIoiIXlpUjOakG9RxAkjVR0omyIgEWGSUZ61gWfkmkhvKMLAfNa4KVLcdAlJXkzQc3JwAKXBNkXCj48anNQZRkcDwDXqdTMF6WA8Oy0PMsXB5F1OETfHB5BHAsoNfpIMoMJD0Pg15PJG7gOZZen2MYiBIDjuHAcnLwvRnIjMI4UZqKgD8IWQQkCQiKMqSg2hCQlcQsSpi0OPDiWyfwckcXinPT8dG1tfjQimoYDQvhtzPB0VVXxdu3b8e3v/1tfPazn0VzczN6enqSghy1OIyVlpaitLQUAJCZmYnm5maMjY29/5JurAhPjARDNRqNWLVqFdKD3NdkQktFKggCzGYzpqenkZGRgfXr18e9IbhgEyXRNXg8HvT19cHj8aChoYFiXI2ZmajMS8d5VZlYXt+EN4+bcdQ8AfPEnNK113HBSQoSVUERsr8QUOSnXr9inq7jedidbkh+QRnBkpOjJGtBDFbGPPx+pYHF4hQFSWl+sZBZBXtVRBcsOF6HNE65/XQ8B5/PD1FSKkW32wO32wWOYRV8M6ADz+kgy0rTjWOYIH2OgygFky3PwSfIkGWJwhQgmKYEcPwpxRfLKNWnnuUBBvAH1XqyrDQBGcgIiApHV4ZMvXRlKNgpx7BAsJJUsGSFjqGM6lGSMcsxkEWFTSFKDF2XEKTrcZxSnXM6HcWMgzgFJAngOB4cz0Cn48DpFPiFYwGXxwu/PwC/IMDn84PhGIXjCwA6HXgdH2yEKjxgJvj7RPCzKCZECjbMggELBb7ggmwP4ugWECUEJDmYxGXI/gCGpq347WuH8b97jqGiMBv/3tqAtvoKcNwp/4YzbZpDhlKqk+LpjsHBQbzzzjvYuHFjUj9/TiddLZWuzWZDb28vOI5Dc3Pzgm5qMhFvbPvg4CCmpqZQXV2N4uJiTExMaNqBo42Vj/ZaQRDQ1dUFi8WCuro6FBQULHgfUhHnZJjw6c0r8enNK2kzbu+7Q+genYbV7lEeVijJVpmKICIgKt10t8cDv+AFw3BIy8iAx+UMmn9LQZObQLBrDigJhQuqqxRzHUWCDBDfAYLDKg08KFxTngMrK002Xm8IQggstbaUAl64fX6wjJIsvF4fZEkEx/F01hjHKX4QesLdBaDjeQSIITmnfBeyLAf/SMHvXGlOybJS2TNQKsOAJAbn7cnBk5ACMfC6oOdHcI2MKEKUEPRRULxAuGADT5H+MgiIDBiWASsxEKEkaJZR6F1csBpGUI0mysHviwGdM6cMpGCh1xkoRcxgDChiBCiOaG6PG4xbhiDKwQkcCjTBsyw16FHUdgqMxLAAB4UZAQbgOChMCJYFE/RG5nU8RFGhtCkjjiQ4vQJ6x+fRO74X6QY9asvy8cn2RlTmpZ32Sjc8tE4CTpXDmNPpxKWXXopf/OIXSSvhzumkGytEUUR3dzf0ej0aGho0fUGJCB7CZcaSJGF4eBhjY2OoqKigQgqHw5Hyke2iKMLhcGBmZgZ1dXUx5ciRYAjSjGtrULxBJ+bs2H2sH6/vdcEfxP94loVXECB4PZDAIC0tAyaDHr6gSEOpJhU8lDTgCM6qYKNKsoJM5MRKBai4hUng9TrFDIZRqkAlGyjMCFKpBiQEZb068CwDg0lGIBCA3+cFwwAerw8sPPAJEngdF/RWYIPGO6cqW4ZVMGme5yAEkzHPKUd5IuUVRUWRJcoSlfWKIun+g24cMuRTrAD6tTJBnFtRiUmMDJ7lIDJBTi7Hgg0meo5VmnlBdFr5XjgGnKz4PXDBQZekySeKiusZE+TsIshMkCQZ5H88x4HnlEYoz3MQgpxlWZbg9QpKYpYVzNag14HjeIVyB5ZKvRkojTox+L6E6aBsHgq1T3GXC8IpwQar3e3FicFJHDNPIN3AoSzbgMyCMlQWJc8oOB1Jd7EOY4BiA3DppZfiC1/4Ai655JKkr7Pkkq7T6URfXx/sdjtKS0tRX1+v6edIc0zLL5vneXg8HgCn7CSHhoYicnsTaY7Fey3hEQ8NDcFgMKCxsXGBv2p4aBnXXpqfhc99dD2qDB6sb23HniO9eOPgCZinfDAY02AyGYKYr1LNSrJMk0MgWO16/RJEWUkAgWDTSpIVgYWiZlOoYVyQF8wQN/Egj9gfUBResqzYJSpJRuGzypIUlBBzEAMK9phlMin+BTpFraX8vAx3kBlADMUFnQ4cr1NoWcHjMgMEWRgIeiaw8AOALEEhswGyLEECE5TbShCh/KxSDatG/QSpbaSyZhQyAlhe+ZySHMSDCfONVTYBKbjRsCwb5C8zkBmlMcYofTylcocEWVLgCjEQhEw4Fko6Z4IVO2iDUTGhZ8CyHHiOUfBzVtn4BEGZWiEGAvD5/fB5lA2FYdigjFikn4tlGMgsTnlwIGjCDkBmWbAswEqKsIVhlEQ8Z3Nh1urAtt+8iqKcDKyvLcMnNzQhN04DLjwSSbpOpzMhXm+yIcsyrr32WjQ3N+P2229f1LXO6aSrru7cbjf6+/vhdrtRV1cHj8eT0OgOnucXNN7ivXZychJmsxn5+flRub2pSLqyLGN6ehr9/f0oKCjAxo0bMTw8rOmaWpKuOoYG+pEt2fCtyz+K/Px89I7P4e2TAzgxMIkpqxN6nkxlCFAeriQTfq9CPRMB+MVAUCUlQpLEYDWsSIaZoDUlxymNJwS5ozIURy1llplSCwYkCQwLQFL8csEEm2AsA0hAICAHj9GKiCKT10MURYXm5RMUepesjExyuZzgWGUwpdencEYZsECw2pNl0KnLDMMG8UxJacQpcjBaQbIsoa0Fq2koVekpu1GlGg7aMgR/VAbPcAjIiqiBY6CYp8vBZEv+PshmUPptLBhWwZElRmEncKzCzJBlJQkH0QGFcibJQfuHIH0tyErgWAYMx0LH8ICehT5ILZQkGYJPgE8MwOf1KB7QOhayzILhWAXrlZX3ZBhG2XSlU2ZIXBAzlliSnBX7z8l5O161OvHa4V6U52djU3MlPr6+HqYIDbjw0IrpJuKlGyu0OIy99dZbePbZZ7F69WqsW7cOAHD//fcnZX5zTiddQPG07e/vh8PhQG1tLcU1JycnNTMBAO2MBFmW4XA4MDExAVmW0dLSEtPhPtGkG54g5+fn0dvbi/T09JD30npdlqiWYgSBRlwuF8rLy0PgisaKQjSqZsb968QA/u9fh+CWg9MfGEAMyOB1LPyiYvDNBpsvIpQkJAWPwGJAggiAJ1lMZpRRPQyUZCQq2C75GQRFBBzPQYQEMXBKrCAGq1YpeNSHrFSCisGPqCRevTLYU8ex0BsMwUkdLCw2u+Kq5hPgFQRFpcbzYBgOvI4Hx3HKsZ9hlUQmK6PSFa4r6CQJyMyp71gUaSWvUKQV2EKSiIaBmKwDDKskRApXSDJYLtgMkxVuL0s+OwuIIsDwwSpaRnCjEMGCVSAN4BS8AQS5wjLFaiUZUOB25T3YII1OlpXqldfzEAQW6RkZSJMVVzSPIMDv90MQ/PD4BIiSCKNOr8AMDAsdF7wPWQS/KyaoflS4xcralN/PyIwVIzNW/GXvu6gqysW/ranBeSuqqAIxPAKBANLS0uLe2yQWK5LS4jD2oQ99KGkecnic80m3r68PhYWFWLFiRciXfzrsHa1WKxU2ZGdna6KLJFvpOhwO9PT0gGVZrFy5csERKtEKNlIQcYjZbEZxcTGys7NRWloa9SYmyrhizoVVq1fjxNA0DnSP4MTAJJweL8ViFa6rRLv7/oCIgBwIHtuDVa2kjKphORaSKIEJJl9ZDsplg51/iTlF7CfsCpKseI6DJIoQRWVqryiKVCknyYCeYSEGm0w8y0IOpnKeZ8EyPNLSTTAFFBoYCxlen4J/SqIISRTBcpzCImBZ8HqlQmOg0LMkUeEhk6pSIvsHw0CWJEiMBJZX3lMKVq8irYAVU3OS9OSgQgxQ1s9RyYPyf1mOUZIxw0Bm5CA9LLhnBV9DKk+JVMgEbqBXgvK9Mzj1N0EoAsF1K2lT+R/HcXRQqM4gQoYEPReksokiPG6X4h3MMDDwOsisUjWzOhZyEJ4gJwCOU9YqScDIjBXPvn4YL751AmtryvCJ9gaU5IY2t7XCC6SBeq7FOZ9016xZEzH5JGPvGO31DocDvb29AICmpibwPI/Ozk5N103kpmCDs8qOHTsGr9cbQv8Kj0jNvETCYrGgp6cHmZmZaG1thcFggNVq1bSbKz4FEtbXlmFdjZKkx+fs6OgaxqGeEUxYnAqFLKjcIni53y8g4PcDOgMYllGwW1lJpqShJUlKB58JmrwgWGnyPAtZYpQEHVyH0vgMTmXmFFe1gChRHwYiUCANUsUKUQYLpRqTgnAAJBm8Xoc0jgVkotKTIMkiEBxLJAmeYEJjkGYywKTnkGHUIc1kpJ4HOo4DE4QGFK+DU3ABG6zQOU7xeGBZBnOzMvLyC6Dng+ONREXIQI79PE8QZjK+R0nyRoNi/ciwgNNqgcGUhvSMNOh5nnJx2eBx36TjFepXUBknQ1Yq1SAFjmVZQBIxMjKC+ro6xfyeQdAsiQ0q4UA/j/JZGDr/DrIEr9cDt8uF6akpyEF+c3p6GuXTZmRkKFCOxmdBa9J1OBwpYSOd6Tjnk260SMbeMbwidbvd6Ovrg8/nQ319PU2Afr8/oWtrCcLrdTgcUelf6ki20nU6nZREHl5BK/So6NckCZlsOtnZ2cjKykJmZibKC7JxyYdW45IPrYZX8ONA9wh6RmcBWYZP8GJ6agbZWQUoKMyHDGWQpd8fULxyOR5isGnGKCUdjDpeOa4Hx6grFRMDv+DHxPgYGhuUBikZ6MkxSiLlWVbxWWAZKvFVOK6nEsbw4CDy8/OQl5sHHc9RfFZLEHPvrq4uZGVlwePxgGEYaupNfGW1JI2DBw+ipaVlUZhkT08PPaUkGy6XCzmMByvrE5/3pYSS+DhIyMnJQV5eHjweD5xOJ2w2G8bGxuDz+UKmUWRmZkZ1GNM6DcJqtZ5zvgvAEki60RITaXZpDfXryewzu91OVWTq90nUOjJWiKJINeTV1dVIT0+n7v2xIhHYAlDcnfr6+uB0OtHQ0BCRZhMrkZNZdJIkobm5mQ4+nJ2dxcDAAPx+P0wmEzIzM5GVlYX2+jKsrSpAX18f9Pp01H1iY9zproRDS94nvOpmGAY+nw/9jBtrarWZyEcKg46DUa9IbBMNYu6t1+uxYsUKyq12uVxwOByYnJyE0+mEKIp0GgNJxuEyc60UxViRioGSqZLvkgYYwzBIS0tDWloaioqK6L+rp1GQHgIAumGRhKyVRXQumt0ASyDpRotk4AW3243u7m7Mzc1FnH1GIpkbNPwBU9tIlpeXU8/eoaEhTdfTWukGAgH4fD4cOnQINTU1C7Dv8GuGJzp1EgQQ7GCfkmISFZAsy/B6vbDb7Zibm0NnZycCgQB9oKxWK61uYr0/gJAqR52IfT4fBgcHYTAYQiYUKM0bJuQapzvUv0+O45CVlRXCBZdlOeKUBYPBQBPxYjF5IDW45plSkkWbRkG8FGZmZjAwMAC73Y6urq6QRGwymRZ8znPRSxdYwklXS9eeRCAQwOzsLGZnZ9HQ0ID6+vqUPrwhuGIY/UvrmPjwiCcZlmUZo6OjGB4eBsMw2LRpU9zPpIYXIiXbWA83wzDQ6/Vwu92wWq1oampCYWEhBEGA3W6Hw+HA1NQU3G43eJ6nsAQ5jkdbG9lcxsbGMDk5ieXLl1PoRRRFyk0l6yR/x7IsveaZSsTqIJCDWm4uyzKdsuBwOOD1enHgwAFwHEcTTLzvIzzIZ11MvBfyXRKRNvCOjg40NDTQqnhqagoejwccx9EkTJL0B5XuexCL2eXVEyJyc3NRUlKCioqKFK5OCVJ1O53OiPSvZCKaZFhtjE74wwcPHkzomupkFi/ZkvecnJzE4OAgysrKsGHDBpoIDAYDCgsLQyATv98Ph8MBu92OwcFBuFwuOgqGJOOMjAywLIuZmRnKrmhvbw95qNXJhiRdNTRBPgdZP/ksqep6J3oNhmGoc1ZBQQFmZmawYcMG+P3+iEMg1cfuzMzMiEfu8NlmyUSq4YXFBsMwMJlMMJlMIfcNeYacTif+53/+B3/9619p32XdunW49dZbqYGV1tBi60hCFEW0tbWhvLwcL7/8ctKf75xPusmEenR7cXExNm7cCLfbrVlwoL6OlgdPlmUcOXIEOp0uIv0rmetGghdsNht6enpgMBhCHNTIa2M9WOQ9nU4n0tLSKGUoXhAaHWFBaLHH1Ol0C46ZRNrscDgwOjoKm80Gr9cLvV6P0tJSZGdnx0ww0apaNTwhyzJcLhdsNhuKiorgD3rzkj9nuiImv2OdTofc3NwQnJ0cu4nc22w2K+N/TKYQnDgQCJzTlW4iwfM8cnJykJOTgx/84AcoLi5GXl4ePvShDyVkzaoOLbaOJH75y1+iubkZdrs9meXTOOeTbrwOv/pGIEd7s9mM3NxctLe3019Uoo03cu1YgL/H40Fvby+cTieampo0TRAmsIgWRzJS6brdbvT29sLv96OxsXGBz0Q8/JckpaKiIoozMwxDH+ysrCxkZGSEPFDkPWVZxooVKxbl2kY+T05ODtLS0uBwOGijiuM42O12CsmocWKytlgPG0lIsixjaGgI8/PzlIpHqmI1NAHgPU3E6nWHj7uRZXkBK8But+PEiRMhFXEs3DxSnE2VbiLNRdLoXrFiRVIWi4A2W0cAGB0dxV//+lds27YNDz74YFLvReKcT7qxgtDGOI7D3Nwc+vr6kJ6ejvXr1y842ifTeIuWdAn9i7h/EXxPS5BkqmUyayAQoC5j9fX1KCgoiPraSEk3HLfNycmh1ZYoinA6nbDb7RgbG4PD4YAsy0hLS4MgKCKC+vp6TUwLLUFUcQS3VTcxwxOP2+2G3W7H/Pw8hoaGIAgCjEZjCE5sNBophk6gj4qKCrS3t4c0wNTvr66IwxMx+R7fSzJ+JFbAgQMH0NzcTKvi2dlZuN1umrTVOHG0hKiVLaB1jYuJRNgYWs1uUhG33XYbdu7cCYfDsehrLemky/M85ufnMTY2Bp7nY/roJiumUM9JE0URg4ODmJycRHV1NZXTzs7OJqxKi9VcI40lq9WKsrKymC5jwMKkq6VJxnEcsrOzaXdYkiTamMvNzUV6ejoGBgaoITypOjMzMxNqDJIpHtFw2/BQN6jCmRMEnhgbG4PX6wXLsvD5fEhPT8eKFSuQlZWVMHMCwIKGnc/nQyCg2CoupmGXKlmp0WiE0WgMMcgPBAI0EY+NjcHlctFNU52MdTqdMkFEw7y/MxGJbABaKWOLtXV8+eWXUVRUhNbWVuzevVvT2mLFOZ90oz1ETqcTVqsVHo+HPnCxIhG2AxB6vFe7f1VUVCwY2Z5IQo/lqSvLMiYmJjAwMIDi4mJkZGSgvDw+oZ0kXXUll0iTbHZ2Fv39/SgsLMSmTZtCHgpJkmjlSUYgEe08ScLRIAAidTYajVi/fn3SD7668VJUVARBENDX1weXy4Wamhr4/X4MDQ3B7XZTpgBZVzzmhPr/S5KEwcFBTE9Po6GhATyvePmS39fZBE/wPB+yaZL1Exrb3NwcBgcHEQgEIIoiMjMzwTAMMjIy6CnhvYiz0dbxrbfewksvvYRdu3ZRWuQXv/hF/O53v0vqeud80g0P9RQF4iifrNlwrCAYMBlsSdy/TpfT2Pz8PHp6epCdnY329nbodDpMT09rumY4K0FrMiDyZ71ej3Xr1kVkWxDWgbo5GM5RDYcATCYT5ubm4PV6I2LQyQZho0xMTCyAKEgQ5oTD4cDQ0BCcTidNNmp4IrzaJoyQkpKSEHaG+r2jwROE1qVOxKkQRiQa0X5XXV1dMBqN1MjJ6/WC5/kFOHG8RmwqIpGka7fbzwhPd/v27di+fTsAYPfu3fjpT3+adMIFlkDSJTeuz+eD2WyG1WqlMtqBgYGUy3VJCIKAzs5O5ObmptxpTP1ap9OJ7u5ucByH1atXJ9ywUnwLePT39yM3N5cmllhHeKLzg+ipAAAgAElEQVReI+N/Ek2KagiA+P2SRDwwMICRkREYjUbIsoy+vr4QaCISCV5LEMy+sLAwJkQRjTnhdDrhcDgwPj4Op9MJSZKQnp4Oo9EIi8VCGSHRfs/xhB3hDTtyX4pk0u97VBGT987LywtJYGRzcjqd9JQQS+6cyqGUWptxDodj0UlXi61jquOcT7rkwZ2ensby5cvR1NREH9pEcVpyvVgPPTkSezwelJeXY/ny5XGvmYy9o9frpUfkxsbGhEng6oe9pqaGJpWxsTE4nU4AWFDdAcDQ0BCmp6dRU1ODwsLClFRjaoiiqKgIH/7wh+mD5fP5qHhiYmICHo8HOp0uBJqI1Y13u93UjW3t2rVJcZ/D8WtASTp9fX2YnJxEVlYWBEHAO++8QzFRsrZYkEikRCyKIsWwKysr6e+J3B+yLFMprfoapzMisQ6ibU7R5M4mkwmSJEEQhKSoW+r30FrppoKjrMXWUR1btmzBli1bFvWe53zSZRgGubm5qKmpWXCD6nQ6OuFBS8RiJBD6F3H/stvtmhMSz/MQBEHTaxmGwcjICNxuN2pra7Fy5cqEEl+kJpma30hCkiR6zB4fH8f8/Dx8Ph8yMjJQWlpKGyyL7WoTg51oEEUk8QRRbRGcWI3FkmRsMBgwNDREmRup6mKTxl5/fz/1FlbTzjweD+x2O6xWK0ZGRuDz+WAwGEI2iWiYKJGZ63Q66uwGRG/Yqf/udCrstFapseTOc3NzEEURJ0+eXCB3jibjjRRa4YVUwRnvRZzzSRcACgsLU2rvqP6lh9O/iATV5XJp5vVqMcgh7ICxsTEUFBRoku2qI9EmGfEEJuOGCgsLUV1dTWW7k5OT6O3tpcdsdVLR8lAIgoD+/n5qsJPIMVCv1yM/Pz+kG69WsXV2dsLhcMBgMCAvLy9E0baYysflcqG7uxsGgyGi0ENN2VLDJj6fj65NXa2rm3XT09OYm5uLaDYUS9ihhijCG3bk/Rd7tF8Mv5ZADkTM0dzcvEDurJbxxpM7BwIBTZUySbof+OmeZZGMvaPf74fRaIxK/1K/VmsVHQteIJUVwSOrqqqg1+sTTriJNsnU4oaVK1dSrNhgMChWjUFWhFoZRQQK5EhJqh41TYw0s8bHxxfAPYsJnU4HjuMwMzODrKwsrF+/HmTwJ1GxqWETdVUcL6EEAgEMDAzAYrGgsbExoQ2CYRhK2YpUrU9OTqKrqwscx8FoNGJychIul4sKTmL9rtTVLQmShAn8lJWVFdIkDW/YaYlUiBrU1wiXO5MIBAIUJ44mdxYEQZOU1+l0npNeusAST7rJ2juOjIwscP8Kj1QwEmw2G7q7u5GWlkabcaOjowlZNgYCgZBdP16C8/v9GBgYoA1HNWYXKdTKKKKoI3JatUTV7/eD4zh4PB7k5+dHFKAkG4IgUGinubk5pPseCTYhoo6JiQn09PQsqNbJJqEWTlRWVlIhSypCFEWMjo6CYRhs3rwZRqORJh2Hw4GRkZEFmwT5E+skwTAMxsbGMDo6itraWhQVFSUk7IiUiFPRBNOSuHmejyt3Jn8mJydD4IlwE3SbzXZaWElnIpZE0o3lqau10iXHxBMnTlBaUCySfyLXDk+6pPkjiiKam5tDdmwtEyHIg5Wbm4t9+/ZRKhb5E6m5o4YvqqqqUF9fn3SCIRQrgv+qGRYlJSXwer04ceIE/H4/bTyRtSXSZFFTwLQ29liWXYA7RuISC8EZYCaTCTU1NcjNzU1JwpUkCUNDQ5iamkJ9fX0IRBIt6ZBNQg3pqHnOxIvX4XCgq6sLOTk52LBhA01y8ZgTapw4UsPuTCXdSBEudxZFEeXl5eB5PqIJemZmJmZnZ2mDczGh1ezGarXiuuuuw4kTJ8AwDJ566ils3rw56fddEkk3Wmidk0aGP0qShOXLl6OysjLuzyRiZE6SLsE5rVYrGhoaQh7I8NdGivAmWX19Perr6ylhW93cUctiA4EAhoeHUVhYGPKwLjbU0y4i4bbqxpOar6s2OyeS3fAgvNiioqK4KrV4oean+v1+9Pf3U92+LMuw2WwYHR2NuLZExswQLnVxcXFELm+0tUXbJIis12w206N4cXExcnJy4Pf7Y8qSYyns1FixxWIJjlJSnhN1NZxIIk6E6hXvOjqdDiaTKaIJusPhQEdHB37/+9+ju7sb5513HtasWYPvf//7VKGoNbSa3WzduhWf+MQn8Pzzz0MQBLjd7qQ+G4klkXRj3XixjF7Chz/Oz88nxEjQCgMQ964DBw7ExTkjKdLiNcmIGqu4uJi+3uv1Ynp6Gt3d3bSqIVaKsZKdllBXzZHwbvXnjtR4IpuEzWYL2SRIkpuenoZOp4vJi000iLPc8PAwqqqqQtYcb23x2Alerxc9PT2QZRlr165N2F4wPMgmQfwS5ufnUVdXh9zcXFr9qdemprDFYgmokymhxHm9Xqxfv14ZYx+8v5JR2KXKvyFW8iYN1i984QvIycnBsWPHcPfdd+PYsWNJVb1azG5sNhvefPNNPPPMM3QNi6HEAUsk6UaLaDdfOP2LYIJ2u13z2HYt8IJatitJEs4///y41UB4pZtMk4xUoF6vF2vXrkVWVlaIP0F4slMnlHiVHTmeJ1s1qyW76k3C5XKhv78f4+PjMBqNEAQB7777bgg0kaw8lVheZmVloa2tLSpsFG1tkdgJer2eNn4cDkdKzX8A5R7t6uqCXq8PYVKkp6fTtQGhPGctJvGyrEyAHhgYQHV1NUpKSiJ+p4kq7FLl35DoqJ6MjAycd955i37faDEwMIDCwkJcffXVOHr0KFpbW/HLX/5yUa56Szrphkc0+hcJnufpMS5exGukzc3NoaenBzk5OWhvb8fBgwc1JShy3UQnNwCn5q1FEjeE+xMAoUYxdrsdo6OjIVWnGiN2uVwx+bbJBtmYhoaGUFlZiTVr1oSoDO12+4Jkp94kYlV2xIPB4/EsaMBpjWjshOnpafT29sJoNCI9PR39/f0hpwgi6kgUKyWY8PT0NOrr6+M2OhMxiTeZTHA4HEhLS4vb6NSCE5N7MxAIwO12w2QyLVphpxVfPlNmN4FAAIcPH8bDDz+MjRs3YuvWrdixYwd++MMfxv3ZaLEkkm6sZMQwDPx+f4htYLTjcKLGNJEI2gSy4DgOa9euRVpamvYPEryu1+ulXE+tpjQkcZWXl2vGE6MlYnWyGxkZobaORUVF9OFOhXdAvAo0mnCCrI1UduEKNpPJRDv8y5cvR3FxccpYCYIgoKenB36/H+vXrw/5/ap9HQYGBmiyC/cljva7sVgs6OnpoTh2sokrXE1GjHomJiZQUFCAQCCAo0ePQpblBfS6WFVmpERMBB+kSXimFHZ2ux3V1dVxX7dYs5uKigpUVFRg48aNAIDLLrsMO3bsWNQ1l0TSjRaSJCEQCKCjowMVFRXYvHlzzF96IjhteHi9XvT29sLj8STM9QRO4bY6nQ7p6ek4duxYTD4sCYvFgt7eXmRnZ8c8OmsNUtnp9Xp4vV4IgkAJ/eEVMcE61RWxluRGvB18Pl/CFaher0dBQUEI/1OtYBsbG4PNZoNOp6OiGZfLhfT09EUlXllWZs4RqlYkJkUk6SwZMUM2sEgSbIPBALPZDEEQsGbNmkVjwuogtMT8/PwF9z/5bsgG1tfXR++5eCbxsizTjS2cpRGpYZdqo/gzNQm4pKQElZWV6O7uRmNjI/7+978nbZhOYkkk3fCbn+BWZrMZALBmzRpNQHsyXg2BQABmsxmzs7Ooq6tL2K8gvEnGcRwaGxvpv5GHQi1MIEYsVqsVPM+HiBtSEYQ5EI7bxqqIiYdtrESsNipPpbcDwVcnJibAcRw2bdpEKVZ2ux1mszmilFjrAEiSuHJzcxPGsSNJsNUG8X19fbDZbDAYDMjOzsb09HQIlzjZCAQC6Ovrg9PpjHp/RJtOEc8knhgoZWVlRWSWaB2dFIlPrJXCZrfbF510tZrdPPzww/jCF74AQRBQU1ODp59+elHvy8TRMJ8TAmciOwRO0b8yMjJQW1uLvr4+VFZWaqo8BUHA0aNH0d7eHve1kiThzTffBM/zqKqqQnl5ecwb5e2338bmzZtDkkx4k0xLAhIEAd3d3bDZbMjMzIQgCBBFMaFjYrQguC3P86ivr08Ytw1PxGTircFgAM/zsNlsKC4uRk1NTcomFai5vLW1tQtwenUQcQJZm9PpjHn8V2PCTU1NKd3YnE4nHTNeW1sLlmWpSICsT111kt+rls452aCXLVuGsrKyRW9salYHgZsIrUu9tkTHBAGhCrve3l4YDIYQE6loFfGXvvQlPPDAA6ivr1/UZzuNEfWLWDKVrpr+pZ4QkUj1qpWRQG5qAGhvb9fUtSUNMkLNSbRJFi5uWLVqVUgFSSpiNcGeHGHjyWH9fj/MZjPsdjvq6+uTriDUTSdSEZPk4vP5UFRUBJfLhQMHDoRUxOrxOokE2WDj2TmSiCROUB//h4eHqb8uy7LweDyoqKighuWpCFEUqQVpuJdwJOUfqTrn5uYwMDBABR3hjBNAgbi6u7vBsqzmIaFagmEYCIKAwcFBFBUVoaWlBSzLUnydSMQTNYkn156ensbAwEBCCrupqalzcvw6sESSriRJ6O/vR21t7YJfRCL+C/GmR5BGBxmhfuLECc1rJGIKcnwCtCVb9TiboqKiiMdbdbUW7plgs9lC5LDhx+vJyUmMjo6iuroaDQ0NKWs4qf0M1LQ8EqRyUo/X0erWpebFLhYDDT/+2+12aupdVFQEp9OJQ4cOAVhohZkoXU7tXtbW1hb3u1b7EqtHE3k8HjgcjhAxjCzL8Pv9qKioQFlZ2aKxfRKiKKKvrw8Oh2PBuKtI+Ho0k3i1zJl8dz6fD52dndDpdCH9iFjCDq/XiwcffBAjIyNnzYihRGNJJF2WZbF+/fqICTNR/4VIQY7dxByGNH60+i8QXuPU1BTy8/M1V3V2u53SkhKlaUXC69SSU0KdI82fQCAAu92+aKeucApYND+D8IoYQAh9bXx8fEEizsjIwNTUFKanpynlL1VBlGpOpxMrVqxY0NyLZnSuPk1kZGRErIjVFehixhIBoYKT4uJiOBwOdHZ2IjMzE7m5uXC5XOjq6qLj69WbRKLH/7m5OfT29tJqX8vPajWJJ3PmiouLqTglVrAsiyNHjmDr1q349Kc/jYGBgZRtLGc6lgSmCyj4W6TPMj4+DkEQNNFLAAV7JWRrgunZ7XY0NDQs4EweP34cVVVVUZt0as07aYY5HA74fD56RIzkSeD1etHf30/FG6l0U1LjtnV1ddDr9TQR2+122l1X83TjuWGRUFPAampqUvJQEIx4cnISMzMz4DguJNEtRjQBhG4SVVVVKC0t1XwtsompcVi1uU5GRgZsNhvl3EaSfScbapiiqakp4j1CRB1kfeHCiWhcYr/fj+7ubgQCATQ1NaWMkw0ooo/Ozk4YjUaUlZVRubPdbqez9dQVsdFohM/nw86dO7F79248/vjjWLNmTcrWcxoj6k20ZJKu3++PKPmdnp6GzWbTDLi//fbb2LBhA4aGhmiXPZpqp7OzE8XFxREJ7LGaZKRxYLPZaLIjWJ0oivB4PKitrY36vskEwW1tNlvE47461N11koiJyU2kRKymgDU0NCQlQogWHo+HmumQ5p66WWe320OqukQSMcGbSdM1FZsEgXWmpqYwOjoKlmUpDTAW9S+RIOyS8vJyVFRUJHSPqIUTDodjAZfY7/fTpmRRUVHK7j9CuRsbG4tYwJDXEK8O4rGwfft2Slu88cYbsWXLlhBF3lkc79+kOz8/j6mpKU06a1mW8a9//QsMw6CiogLLli2LWeH19PQgNzc3hLyfTJOM+AIMDg4iOzsbPM/T7nX4w5poQ4dMKh4dHU24klOHKIr0YVUnYoZh4PP5sGzZMlRUVKTMTIf4Gc/OzmpSZiWSiAnNz2azpXQwJqDch0Ri3tjYiPT09BDqn7qqCx9dH6/xRZgrkiShsbExZRVoIBDA3Nwc+vv7IUkSeJ4PwWHJJpvs79btdqOzsxMZGRmoq6vTdB2fz4cdO3bgn//8J+677z54vV4cPnwY559/Pj7+8Y8ntY4zHEs/6ZJR0uFB1EHxjiTESJwojbQc6c1mM0wmE0pLS5NKtoCyKfT19SE7O3vBkVz9sJI/ibASyLDG/Px8VFdXp6wDD5z6vrKzs5GWlgan00kpWOpEl6gUVt04LCsrQ0VFRdIqpnD6GjGdJ0yK6urqpAdhRlo38ebVooJTMxNIIo5mhak26yEVaKpCXYGqIRA1Dks2WfW9p8X7V5ZlDA8PY2JiAk1NTZrZBocOHcJtt92Gz372s/jWt76V0vv2DMb7N+kSDKmlpSXiz9ntdvT09ECn06GhoQG9vb2oqanRdEQeGhoCy7IoKytLONm6XC709vaCYRjU19drlgurm2HkgQVCMViGYdDf3w+WZVFfX59ShRPBhHU6Herq6hZUW2ourN1uh8vlChElEBpRpO9IPS6nrq4upd1pcm2dToeCggJ6jFX7OZBkkmgiJs2r9PT0RcEU4cdrUrET6Kmqqgq5ubkp+15cLhc6OzuRlZWF2trauBWomppIsGK1apL8jnU6HZxOJ52WvXz5ck3Vrdfrxfbt27F37148/vjjWLlyZUo+53sUS5unGyuiUcaI0xjBIYl4Qiuvl6jHZmdnaXWi5cZSY6vJDFSM5L9KqhKLxYITJ07A6/XCaDQiNzcX8/PzmviS8YIcyYkXcLSqJRIXVo0jqtVh6mp4amoq7rWTCVEUMTAwgPn5+ajy7EgTibUY62i5diKhZiYUFRVhYGCAwiuyLNPufzRTokQagAS6aWpq0gyvRFOwEVEH8f51u92QJAklJSXIycnR5LV74MAB3H777bjiiiuwe/fuc7W61RRLptIVRTFispRlGXv37qWMBJL0iEdpuIIpEk4b6ZrE+HlycpLu+uSmzMrKQnZ2dkhFF+5Bm8omWSTclkz7Jc26RCrO8M9KuvupUjgByu+BUMNmZ2fBcdwCRkcyCif1uglMkUzDSW2sE14RZ2ZmQhRFOtJpMRBIpLBYLOju7kZJSUnEvkIs5V88nrPNZkNXVxeKiopQVVWV0nUT+lp+fj6Ki4tDquJwG9GMjAzaFL3//vtx4MABPP7445p6L+dILH14IVrSBRRGwqZNmzA8PEwVXeXl5REfQrPZHGK6rY54uK36aG2z2WhFp9Pp4HA4UFRUhNra2pTu4ongtuqKkyRi4tBF/qgrutNBASNBRvykpaWhtrYWer2eJmLyR+0gFml90UI96ry+vj5lx3FBEDA7O4vBwUE6NZqYiCeyvmjh9/vR09MDQRDQ1NSUMCyk5jkTDJtsFOnp6Zifn6dz5lIpaZYkifK+oxkYqTcKh8OBt99+Gz/5yU/oer761a9iy5Ytmji750gs/aQrSVJEEYQsy3jzzTeh0+lQXFyMqqqqmIlpeHgYLMuioqIi5BrJNMnsdjslxWdlZcHlctEHITs7O6mjIQkyZ22xuK3aoUvN5fT7/WAYhtJ7Uk1ds9vtmpgDkdYXjZWgZjxEGnW+mJBlmU45Vgsz1BWxw+FIaqNItAmXSPh8PuqOZjAYIMvyAivMxZwoSOVcXFwcl+1DwuPx4Ec/+hEOHz6MH/3oR1T1t2nTpnOFmaAl3p9Jl8h2nU4nzj//fE0UG7WYItlkS8ZjE7w4nAlBdnxy9CdHL3UijkYfUk/zTQYTjhXEBWx8fJxyNEkzhxxdyRoTrR4XI0IIj0hHf0Jdy8/Px/LlyxeVSMKDSIPz8vI0NYXUngSRKna1OsztdlPZcX19fUpPE8T7VxTFEIqZeiMjGwXB2NWeCbG+P1EU6ay5RCrnvXv34o477sCXvvQl3HrrrSmjGJ6FsfSTrtppzOl0oqenBwDQ0NCAd999Fy0tLZqO9URMUVtbSw03tCZbUmnNzMzEdbwKX7t6NhehD4VzdKempjAyMpJSbJUE8QUgpwF1xRKOIZKNIpaqTh2k4j8dMIXH46G+EsXFxbT7H89mUksQabDL5UJjY+OiRB+REjGBxCoqKlBaWpqyjUJdOdfU1GgSE4RDT7GsMAnmnAhW7na78YMf/ADHjh3DE088gYaGhkV/zrM83h9J1+FwUA9R9fHy8OHDaG5u1nQEJ25OtbW1muWv6iquoqIirs2j1s+j9tKdn58Hx3HIzc1FTk5OXI6u1ohHAYu1PrJRkM2C8EzVx+qhoSG43e5FJ63wiDXqnIQa4ySJOHwmXKTPq54jttiqPFKQI3leXh5ycnIoBTDSFIxEEzGZrWYwGBZdORM/DjVXVxAEMAyDyspK5Ofnx31GSCP7jjvuwNVXX42vf/3rS7m6VcfST7p+vx9vvfVWREzs2LFjWL58eUzBA4ESAoEARkdHQ3Z79bE/HJ8j4oacnBwsX748pVWc2+1Gb28vAKViNxgMMTm6hDGhJeFrpYAlEmrC//j4OKxWK8WvyXeYrNevOtSjzhPpwEer2EkiJhxTs9l8Wo77xFjc5XJF9eeNhGHrdLqQZl2kRKzGnKPJbBcTZOZfRUUFMjIyQhIxmV6sFk0Qf+D77rsP7777Lp544gnU1dWldE1neSz9pAsolU00j4SSkpKI+Gc83JZ01Mmx3+PxwGAwwGQywW63Q6/Xo7GxMeFZaLFCnRDr6upiPkCR5LnqYyFRjJHPpFY3nQ6Ywmq1UtodwT8Xo6pTh9rSsaGhISWiD7UPBjHoJpMotEAnWoN4MCdTOcdLxDzPY2BgALm5uaipqUlpJUlkzWS0UqSTAbkHyRr/9Kc/4YUXXoDb7cZ5552H2267DS0tLSmRLV9zzTV4+eWXUVRUFNFaVZZlbN26Fbt27UJaWhqeeeYZKoz6zW9+gx/96EcAgO9+97u46qqrFr2eGPH+SLrRnMbIDDG1fDLZJpnP50Nvby9sNhuysrIgCAIEQUBaWlpIRZxMNUfmTi0WtyXHwnBqmMFggN1uR25uLnUYS1UQ0xtiThKrsaL2+lVX7OGJmFSw6ukQqbZ0BE5VzoQXyzBMCHRit9vp7zhcohsvvF4vurq6wPM8GhoaUvadC4IAm82G4eFhuvmH09cWixETqXcivHKn04nvf//76Onpwde+9jXMzs7i0KFD+OpXv6ppIku8ePPNN5GRkYEvf/nLEZPurl278PDDD2PXrl3o6OjA1q1b0dHRgfn5ebS1teHgwYNgGAatra04dOhQShvRYfH+VaQBoao0td1iIk0y8uCPj4+juroaK1euDKkeybF6enoafX19tJpTH6tjHYMJTJGbm4v29vZFHcF5ng/xNCV+rm63G/n5+fB4PDh06BCdy6VuNCUaRPQxPj6uee5ZJGWT2tlsdHSUGuqQWWf5+flobW09Ld39QCCAtWvXhlTOZEoyaUKpJbrq2WFqDJvAE+T15H5Jta0joEBPZrMZxcXFWL9+PViWDeE5z8zMwOVyUSvHRBIxMdaRZRktLS2a7gtZlvHPf/4Td955J66//no88sgjKRVekPjIRz6CwcHBqP/+l7/8BV/+8pfBMAw2bdoEq9WKiYkJ7N69GxdeeCF9Ji688EK88sor+NznPpfyNcaLJZV0GYaJaWQebreotUlGlE3FxcURJzdEcvhXeySMjo6GKNZIoktPT6dyZABYtWpVSmEKdbMpnE2hxjetViuGh4djJpFIQcblFBQUaBqXEysIdk6ktIIgUDPu0tJSeL1eHDp0KClVXXioTxRaDWTUEl1C4CebrcPhoA3YQCAAnU4Ht9uN7OzshM3n44UaF169enXI/aLT6ZCfnx+S4MMTcbgEm7ASyHdIBrpqZT0AihLtnnvugdlsxp///GfN3tWnI8bGxlBZWUn/u6KiAmNjY1H//r2IJZV0owXP8/SIyLJsQuKGnp4epKWlJez4r/ZIIEILoliz2Wzo7++HxWKBJEkoKCigzT+yISwmZFnG7Ows+vv7UVJSgg0bNizYYCLNMyPVnM1mozr6cHvJrKwsqpySJCnlI8PjjTpXQydmszmkmiObWSwxgsPhQFdXF7Kzsxd9olBvtiUlJXS0jcViQUVFBQRBwPHjx0NMYRYDPxEf3crKSjQ2Nmqe5BAtETscDpqIGYaB3++HXq9Hc3OzJh8JWZaxZ88e3HXXXbjpppvw6KOPnpbqdqnFkk66BEbIzMzE9PQ0Dh06BIZh6I0f3mQiQcQNgiCgsbExZZMbyDwut9sNt9tNR7aTRExG1Ki76dnZ2QnhgMRNS6/XJ7xRqKs59Uwu9ay148ePw+/3IycnB0VFRRAEAQaDISUPm5ZR5+HQCRBazU1NTUVUrfE8T5Vw0SYtLCZmZ2ejjrYJp//19/cn5JWs9tFd7LgfIDQRE07vwMAAysrKwLIshoeH4womHA4Hvvvd72J4eBgvvfQSqqqqFrWmVEV5eTlGRkbof4+OjqK8vBzl5eXYvXt3yN9v2bLlzC8QS6yRRuwdYzXJRFEMYSO4XC76gJLxKlarNSFxg9awWCzo7e2lnf1ID1k0/it5QLOzsyM+oIlMhkgmSJVVXFyMysrKEEZCPLOfeHE6Rp2rqWGzs7NwOp0wmUwoKioKkQ+n4n0I/pmIsXi4VzKxSQynXs3MzGBwcDDlPrqAUlx0dnZG5fRGEkw88sgjEAQBR48exbXXXou77747pTj7K6+8gq1bt0IURVx33XW48847Q/79G9/4Bl599VUMDAygsrIS09PTsFqtABSIqqqqCrOzs/i3f/s3bNu2Dbfeeiv279+P+fl5tLa24vDhwwCAlpYWHDp0KOXUOlW8P9gLfr8fgUAg4SaZz+fDwMAAJicnodfracWnPrIu5hhKVFMAEvLOJRHNzJwkOZ/Ph+npaVRVVaWcAkbG5bAsi4aGhqhJhWxm4T666oo9/NivxlZT7TlA1t7V1UWNb2RZTlpVFx7qtZMTy2JD7VdrsVgwMzMDhmGoiCJVgvjHqOIAACAASURBVBiy9tHR0YSafHa7HXfddRfGx8fR1tYGs9kMs9mMt99+OyU0NVEU0dDQgNdeew0VFRVob2/HH/7wB6xYsYK+5nOf+xx2796N2dlZpKenY9WqVfjiF78IAPjWt74Fh8OBm2++Ga+88grS0tLw9NNPo62tDQDw1FNP4f777wcAbNu2DVdfffWi1xwj3h9J94477kBGRgba2trQ2tqKzMzMuA+xmjVQXV0NnU4Xgm2SB5RUIVrZCMCpMeTz8/OaRs4kEpIkYWJiAmazGRzHgWGYBUluMZShRMflRIpIrmFELKHT6TA5OYns7GzU1dWl1HlN3UCMJRQIP1WoqWGxmolktlpmZmbKXePCRQ45OTkU3iFcWFmWF8yr05r0PB4P3n333YRG58iyjH/84x/Ytm0btm7diquvvvq0YLd79+7Fvffei1dffRUAsH37dgDAXXfdFfH15513Hu677z5ceOGFABTKIRmsehbE+yPpdnd3Y9++fejo6MDhw4chCAJWrVqF1tZWtLe3Y+XKlfQBslgsGBwcpAMP4zWD1GwEm81GKU3qapgkObUAobKyMqqNZLJBMGe/3x/CiY3Ez1Vjm9nZ2XH9B1I5LidSOJ1O9Pb2wul0wmg0IhAIaDb70RLE5ChZv1g1/U+94RKOrsvlgsvlQnNzc1yHtESDTFvIycmJKXIInx7idDoXJOLwokCdzBMZnWOz2XD33Xdjenoajz32WAgDINXx/PPP45VXXsGTTz4JAHj22WfR0dGBX/3qVwteOzQ0hE2bNmF0dJR+TzzPY926deB5HnfeeScuvvji07ZWDfH+4Ok2NjaisbGRKk28Xi+OHDmCffv24ZFHHsHJkyeh0+moUOCBBx5AU1OTpgczGhuB3Ph9fX1wu91gWRY+nw9ZWVlYs2ZNSn1LiXE2oYCFH2kjNZkIiZ5Ic0mjLlKSU4/LSUXDRh1qE5aqqiqsW7eOblCk2rRYLJT/Gs6YiFdNCoKA3t5eCIKwgEqVSESi/5FNlMiDGYah1WKiqrpIIUkSBgYGMDc3h+bm5rhNvkjTQ4hpfTjPOSMjAwaDATMzM8jLy9NM7ZNlGa+99hruuece3H777fjyl798VjETnnvuOVx22WUhn2VoaAjl5eUwm8244IILsHr1atTW1r6Hq4wcS6rSjRcvvPAC7r33Xnzyk5+E0WjEwYMHqUlNe3s7Wltb0dbWhtzc3IQrU8K39fv9KCoqgs/ng81mS4laTV19RpsmkMi1Io1/Jxzm6upqlJWVpVRKSgzLtc4QI9WmWrGmbjKpk5z6VFFTU5PSseFAaDJXG4uHq+q0VJuRwmq1oru7OyE/Wq1BXNJmZmaQkZFBzWrIGqN5dVitVtx1112Yn5/HY489hvLy8pStKVYkAi+sX78ejzzyCJ0IEx5f+cpX8KlPfQqXXXbZ6Vtw7Hh/wAvxYmxsDHl5eSFQApkX1dHRgY6ODhw8eBAOhwPNzc00Ca9duzZqAykQCGBwcBBzc3Ooq6tb0JRQH1fJA0qaYCQRx3JqIjaVp2NYI3HTIsIPo9FIkxxJIFrWGC1SOeo8knSYjEzKyMhATU0NsrOzU5a0kjEWV6vqSCIGsEAQw7JsiMihubk5paIYIHR0zvLly+n3Esmrg5jTHD16FEajEU8//TTuuOMOfPGLX0zpJhCPmfDrX/8a119/PRoaGqDT6WCxWPDKK69g5cqVIb4J11xzDR5//HEMDAzQ34nFYkFaWhoMBgNmZ2exefNm/OUvfwlpwp3h+CDpJhJ+vx/Hjx+nifjYsWPgeR4tLS1oaWlBW1sbampq8OKLL2LZsmWorKykHEctoT4KEnw4vAlGTEzsdnvI4MxUBak+TSZTRB8GkkDUlRxRg4Vj2OGhtkY8HZi2KIp0zl1FRQVlTsQz+9EaqTQWj5TkJEmCIAgoLCzEsmXLkJGRkdJ5eYlAFWSNR44cwf3334/+/n469PKWW27BlVdemZJ1aWEmPPPMM3j++eep8fo111yDbdu24Y477sBvf/tbdHZ2gmEY1NTU4KqrrsIvfvEL+rNvv/02brjhBrAsC0mScNttt+Haa69NydqTjPcHppuq0Ol0NMHedNNN1Kv34MGD6OjowG233Ybjx4+jqakJH/nIR9Da2gqe5zVTnliWpZJX0pggnEibzYahoSG4XC6kpaWhsLCQmuqkwixF67iccFlu+Bqnp6dDRAgkEYuiiO7ubhiNRrS2tqbUVAc4ZbZeXl6ODRs2LPi+1Tg7MSDX6XQh8E6kgY3AKdbD9PQ0GhsbU8J15jgOOTk5yMnJoSIHURRRW1sLj8eDgYGBpD0SwsNut6OzsxNFRUVoa2vTLHN/9dVXcd999+E73/kOPv/5z4NlWTpRIlWxf/9+1NXVoaamBgBw5ZVXRqxEq6ur8fLLL4f8XUtLC+x2O+1VXH755di4cWPIa8477zwcP348Zes9nfFB0tUQhKVwwQUXwGQyYe/evdi3bx8yMjJoNfzoo49SehWhrLW0tGh+eHQ6HViWxczMDPLz89HW1kYTiNobIT09PSSBaMVew8flhKumtIROp1vQqFP7N/T09NAmotFohMPhiOvfoDWIaQ/LsjGbfNGaiSQRk2ZiuNkP4SMXFhaivb09pcdq9XcfTeSgpteFb2jxNgtS+VutVqxatUpz83Z+fh7f+c534PF48Le//Y02DgEsMCRabETyPujo6FjwuhdeeAFvvvkmGhoa8POf/xyVlZVnlW9CKuKDpJtgbNq0CS+99BL970suuQSXXHIJAOXm7+zsREdHB1588UV873vfgyiKWLNmDdra2tDW1obm5uYFjTSv14ve3l4EAgGsXLmSPjQ8zy/wRiDk+cnJSfT29kKW5bgm5nb7qXE5bW1tKVUQ6fV6yLKMubk5OmWZsBHC/RvUHGetm4Xa1jFZty69Xo+CggJqCak2+5mfn0dnZycCgQCys7PBMAwsFkvKNguPx4POzk6YTKaY330kjwSyWagl4uEjiIh1ZFlZGdra2jSPh/rrX/+KH/7wh7j77rtx5ZVXphT+STb+67/+C5/73OdgMBjw+OOP46qrrsI//vGP93pZKY8Pkm6CEevm5DgOq1atwqpVq3DttddSkcWhQ4ewf/9+/OxnP6NmK62trVi7di327duHVatW4dOf/nRcVRPpPGdkZKCsrAxAKPY6NDREcU2SgOfn56kBdSrH5QCho87V1We4G5daaTU+Pq554gXxYsjPz1+0i5k6GIahk3Hn5+dRV1eHkpKSqJuFOsklcrIYHh7GxMQEGhsbk/JtDd8sAITM0uvu7obf76cmRLOzs3G9Oubm5nDHHXcgEAjg9ddf1+wkttiI5omgDvWGc9111+Hb3/42/dmzxTchFfFBI+0MB6F/PfTQQ3jyySdRU1MDh8OBqqoqWg23tLTQqiuZEAQBZrMZU1NTNLkQEx1SbS4Ga03FqHN1g8lms4XIhtPT02GxWOhmkUquM6DdWFxt9kMYE2r5dTRaGHEyU0/PSGUQ0/WKigqUlZUtGEEUrqojm/BLL72E+++/H9u2bcMVV1xxRqvbQCCAhoYG/P3vf0d5eTna29vx+9//HitXrqSvmZiYoBDHiy++iJ/85CfYt2/fe+GbkIr4oJF2tgTDMCgsLITJZMKRI0dQUlICSZLQ19eHjo4OvPrqq7j//vvhdruxcuVKmohXrVqliS6mHpdz/vnng+d5epy22WxUiRcIBBaY6GhJDsT4prS0dFHYp7rBREIQBAwNDaG/v59uFgQWUSvqko1EjcXVJwtSlUUTIWRmZtLZYU6nUzNzIJEIBAIUN1f79EYyXCc0xdnZWXz961/H8PAwWJbFNddck/JBm/GoYA8++CCefPJJSJKElStXorCwENdffz0dBFBdXY3s7GyqoCS4/DPPPAMAyMvLw/e+9z06eeKee+452xNuzPig0j1LQxAEHDlyBB0dHdi/fz9OnDgBo9GI9evX00RcU1NDk57X60V/fz98Ph8aGxvjVoeRqjhg4ZGfPJzEtIdhmJjGN8mGy+VCV1cX0tLSUFdXR7HPcMe1RI3WSdjtdjqBN9XVpyiKGBsbw+DgIK2a45n9JBrEOjKRGWuyLOPPf/4zduzYgW3btmHNmjU4dOgQzGYzvv/97ye9FnVooYK98cYb2LhxI9LS0vDoo49i9+7d+H//7/8BOOv8ElIZH/B0z/WQZRlWqxUHDhxAR0cHDhw4ALPZjNLSUhiNRkxMTODJJ59EXV1d0tUnOfKrbS9JcvJ6vRT7TDXnlohLGhsb4/KRo3kjRJPkiqKI/v5+2Gy204JrBwIB9Pb2wuPxoLm5mQpvYpn9kHXG88Eg1yE0s6amJs2V/vT0NL75zW9Cp9Ph4YcfTokLWqRI1KTmnXfewc0334y33noLwAdJN1J8kHTP4jh69Ciuuuoq1NXVoaKiAocPH4bVakVjYyM1+SGzv5JJlPPz8+ju7kZmZialgHm9XmqHSBJIsl3+ubk59Pb2LtpYJ9qgS71eD6fTiZKSEtTW1qbcO4AMbtRafaqxV5vNRse/RzP7IYbnicibZVnGn/70J+zcuRP33nsvLrnkktOK3SZiUgMAN998M0pKSvDd734XwFlnUpPK+ADTXYpRVFSEP/3pT5RwDiiV18mTJ7Fv3z784Q9/wHe+8x0wDIN169ZRWXNjY2PM4zUZdS5JEtatWxcim1Z7N8zNzdEuv1rPH89zQG38nYoZYuGDLn0+H7q6uuD3+1FWVga32439+/fThhJJcMluRmT9ABISgBgMBhQWFtKqM5rZj8lkgsfjgU6nw9q1azVLhKempvDNb34TJpMJb7zxRsqnJi82fve73+HgwYPYs2cP/btzxaQmlfFB0j2HQ01mJ8HzPNauXYu1a9fihhtugCzLcDqdOHToEDo6OrBjxw709PTQ6bqtra3YsGEDSkpK4Pf7cfToUaqYinQkZRiGNm7CKWE2mw1jY2NwOBwRxyIBCt1nbGws6vUXE/GMxcmR32azYXJyEh6PJ6GJyGqRQyqMy9XfZXFxMb3+wMAACgoKIMsyTp48GRM+AZTv/4UXXsBPf/pT/OAHP8DFF198xpgJWqhgAPD666/jxz/+Mfbs2RPyHZPX1tTUYMuWLXjnnXeWfNI9p+GF//3f/8W9996Lzs5O7N+/nzrEh0e07urAwACuvPJKzM3NobW1Fc8++2zKZatnYxAzl/3792Pfvn04cOAA+vv7EQgEcMEFF+DKK69ES0vLojwBwsciORwO+Hw+ZGRkYNmyZcjJyUlpMy4ZY3G1SIKsM5orHPFjII2+VBqXA6dobDqdjhq+kIgGn7z++usAFFy1tLQUDz30UMpHvcdjJrhcLhQXFyM/Px9FRUVwOp14/vnnsXLlSmzfvh2//vWv4ff74ff7sWfPHtTX19OfPQtNalIZSxPT7ezsBMuyuOGGG/DTn/40YtKN1V29/PLLcckll+DKK6/EjTfeiLVr1+Kmm256Dz7Jexs7duzAm2++iVtvvRUTExPYv38/3nnnHepNS/DhFStWJIzfEntBp9OJ2tpaKm0mmOZixyKJokinczQ1NS3aWDySK5zX64UoiigrK0NJSYkmy8ZE3o9YUzY0NGhOmn6/Hw899BB27doFk8kEm80Go9GIF198MWWz1LQwE/77v/8bL7/8Mvr6+mCz2VBUVITjx4/jpptuwv/93/+hu7sbF1xwATo6OrBq1SoAwLJly/DSSy+djSY1qYylmXRJbNmyJWrSjdZdvfPOO1FYWIjJyUnwPL/gde+nsNlsyMrKijgV+Z133qHV8MmTJ5GRkUGx4ba2tqgesGqnsWiNpsWORSIigdLSUlRWVqa8UUbsEfPy8lBQUECVf+pBnGrLxmQ8mDs7OxOunicnJ7F161bk5eXh5z//OeWs2u32pCw4o4UWZsJ//Md/4N5778XmzZsRCARQUlKCmZkZ7NixI+S16te9T+L920iLZrQxNzeHnJwc2O12XHHFFejr68PMzAwsFssChdUbb7yBb3zjG/S/u7q68Nxzz+Hiiy/GV77yFezZs4dSnZ555hmsW7fuzHy4FEU0mpbRaMTmzZvpg0I8Fg4cOIB9+/bhueeew/DwMJYtW0ZNflpbWzE+Po6uri6sWLEiZqMp0sh39Sia0dFRmuDCq+G+vj4IgkDZGakMUj1bLBasWLGC0sxycnJCpoYQep3ZbKZuZup1RjOokWWZYtuJSIQlScJzzz2Hhx56CPfffz/+8z//M+T6qR4fpMWkRv0anueRnZ2Nubk5jI2NYdOmTSE/ey6b1KQyzvqk+/GPfxyTk5ML/v7HP/4xPvOZzyz6+jt27MDHPvYxPPXUU2hra8OOHTvwk5/8JOQ1H/3oR3HkyBEAoFr9f//3f6f//sADD7yXDvVnLBiGQUFBAS666CJcdNFFAE75t3Z0dOBvf/sbbr31VgiCgA9/+MOYnp6G0+nEmjVrNOO3scYi2Ww2DA8Pw+l0UttLYsKdKnN3i8WC7u7uuAYyPM8jNzc3JGFGMqgh8muSjP1+Pzo7O5GVlZWQn8TExAS2bt2KwsJC7NmzJynp9QdxdsRZn3RJsyDZiNZdzc/Ph9VqxV/+8hfs3r0bg4ODaG5uxp///OcFSVcdzz//PC666KKUO/2fq8GyLGpra1FbW4t//etfuPnmm/G1r30NXV1d6OjowNNPP43jx49TUxyCDyci4iBua4ODg8jKykJLSwskSaIJbmRkhOLDyY5F8vv96O3thdfrTbp6juRmpqaEdXd3w+fzIScnB3q9nsI6sdYpSRJ+//vf41e/+hW2b9+OT37yk2cVM4G8pqKiAoFAADabDfn5+ZpZDe/HWPKYbiyjjc9+9rPYtWsXXC4XbrzxRqxevRrbtm2D1WqN+l4XXHABbr/9dnzqU58CoMxi2rt3LwwGAz72sY9hx44dKR2pcy6FLMtRj9N2u52awO/fvx/9/f0oLi4OwYcjCQC0GosvZiwSESFUV1enXHEHnJrySwxwPB5PiFpNbaJD5Nccx2F8fBy33norSktL8bOf/SwlpuqRYn5+HldccQUGBwdRXV2NP/7xj8jNzQ15dmZnZ7FlyxaUlJQgPT2dmuY88sgjeOihhyAIAiRJgs1mw+7du6HT6fD5z38e+/fvx/j4OD72sY+ht7c35eY/Z3EszUbaiy++iFtuuQUzMzPIycnBunXr8Oqrr2J8fBzXXXcddu3aBQBYt24dOjs7IcsycnNzKb/ylltuwde//nVUV1dj/fr1+N3vfoeSkhJYLJaI7zcxMYE1a9ZgfHycdvEnJiag1+tx+eWX48CBAygsLMTBgwcjHv84jsPq1asBnOrgAu9P6hrh1HZ0dNBG3dzcHBoaGig+bLPZ0NPTg4svvjipcerxxiKZTCYMDg6C4zg0Njam/Dsn8/dmZ2djGuCo12m327F9+3acPHkSVqsVX/rSl3DttdeisbHxtE3j/fa3v428vDzceeed2LFjBywWCz3t7dq1C7fddhu8Xi8uu+wyPPjgg/jGN76BZ555BgMDAzAajWhqaoLX68WyZcvw3HPPUbHOj3/8Yzz11FPgeR6/+MUvKCT1PomlmXRTEY2Njdi9ezdKS0sxMTGBLVu2ULVRePzyl7/EyZMn8cQTT4T8PblpN23ahBtvvBGf+cxnIkIU0XTmH1DXlBBFEe+++y7eeOMNPPbYY3A4HFi2bBkaGxtpNdzU1LQojiwRSIyOjmJubg46nS7EYD2eH63WIAY7hYWFCW0Yo6OjuPXWW1FWVoZLL70U7777Lg4cOICdO3eiurp60euKFIk8AyTWrl2L559/HvX19Zom746MjOAjH/kItWS0WCxoaWnBiy++iJtuugl2ux0cx9EKegnEB0k3Wtxxxx3Iz8+nu/z8/Dx27twZ8bWbNm3C9u3b8dGPfpT+HblJ33jjDezcuROBQACvvfZaxJs2UtKVZfkD6lpY7NixAxUVFfj85z8fYgLf0dGB7u5u5ObmUqZEe3t7QoMv3W43Ojs7kZ6eTmlaamNwIpBIdiySJEkwm82wWCwJGexIkoTf/va3ePzxx/HAAw/gwgsvPGPYbU5ODoXUyGkwFsS2f/9+XHXVVTh58iRYltUMse3cuRN9fX144okncMMNN6C6uhqXXnopGIZBfX09xsfH0drais7OztMGpZzB+CDpRou5uTlcfvnlGB4eRlVVFf74xz8iLy8PBw8exGOPPUaNPAYHB3H++edjZGQkpGq54IILsGfPHjQ3N2PdunV49NFHUVlZGfGmjWTuMTs7i02bNqGvrw+AUhFcdNFFOHHixJn5As6xICbwZDYdwQyXL18eYgIfzjuWJAnDw8OYmpqKO3SS4MM2m43ycrWMRbJarejq6kJpaSmWLVumOWmOjIzglltuQU1NDXbu3Jly6hcQmwV01VVXhdyvubm5MSG2LVu24De/+Q2lhE1MTKCkpASCIOD6669HbW0t7rnnngU/6/f///bOPSaqq2vjz0EqxfsNW/StOswwAsPNC2gbaR0sYLRqSAGxthAhQozW1ESUz6YWrbeaIpVP26qtiiQOXqpi8xW0KiYNrQUVagGtiOA9Fma0FD8Bgef9A+Z0BmaGUUFu55fshH055+w9Oay9z9prr/UEEyZMQFRUFHbt2oX8/PwWh20MV9BdHEnoPi9t8dLeuXPHyLnH6dOnMXDgQFHo6nQ6zJkzBzk5OXjzzTfFDQ1D8vPzzX6OdQeb4WdB7wT+3LlzyMnJwYULF1BdXS06ge/Xrx/Onj2LlStXQiaTPZNu1FxI+oEDB6Jfv3548OABHj9+DDc3N6stWxoaGrB3717s2rULiYmJmDZtWofEKrNWvVBZWYmpU6di1apVZlUJZ8+exRdffNEioq+eEydOYPr06Th58iQCAgKM6pqvoLs4PfdwRFthyXTtlVdeEUON3Lt3z+wxTFPOPd599108fPgQdXV12LRpE9zd3dGnTx+o1WqTNsN9+vTBvn37jD7HgoKCxJVbT7EZNsTGxgZKpRJKpRIREREAGj2BnTt3DuvWrUNRURFGjx6NmJgYjB8/XlwRP40ANheS/s6dOyguLhb1wPpIF62FRbp58yaWLFkCpVKJ7OzsNvfz+zTMnj0bKSkpiI+PR0pKikn799raWgQHByMiIqLF+6V/9/VO0/XHfU2RkZEBR0dHFBQUGAnde/fu4YMPPkBKSkp3ELgWkYRuG2DNS9vcuUd2djZWrFgBQRCgVqtx+PBhpKenw9fXF3PmzEFwcDCmTp3aQugqlUrx7xEjRmD48OGi9YbEv9jZ2cHW1hazZ89GZmYmbGxs8PDhQ1E3fOTIEZSWlmLkyJGiEJ4wYQKGDh1q1Wqzrq4O165dw+PHj+Hr6wt7e/tWwyLdv38fLi4uOHDgAPbs2YPExET4+/u32+rWnClYcxITE9G3b198+umnGDBggLjKTU9Px8KFCzFgwAAMGzYMFy5cgFarFcPo6L+k5s+fj/LyctFV5zfffGOyP/n5+fjpp59w7tw5TJkyBeHh4XB0dERlZSVmzpyJ9evXG51i67aQtJQkrKCiooL+/v5UKBScNm0atVotSTI3N5fR0dEkyezsbLq7u9PT05Pu7u789ttvxetLSkro4+NDGxsbhoSEsLq6mg0NDRw4cKDF5/722290cXFhfX09STIyMpJKpZIeHh786KOPWF1d3U4j7h7U19eztLSUGo2Gy5Yt45QpU+jh4cHQ0FBu2rSJp0+fZkVFBR89emSUbty4wVOnTrG4uJhVVVUt6g1TVVUV79+/z6tXr3Lu3LkcNWoUhw8fzujoaO7evZs1NTXtNr64uDhu3LiRJLlx40auWLHCZLu+ffuaLA8NDaVGoyFJxsbG8quvvnrmvjQ0NHDy5Mk8efIkSTI5OZnvvfcea2pq6O/vz6SkpGe+dyfFrFyVhO4LZtq0aVSpVC3SsWPHWgjZQYMGmb3P3bt3qVQq+euvv5IkMzIy6OTkRLlczs8++4wRERFcs2aN2L66upphYWGUy+X09fVlaWmpWLdhwwbK5XIqlUpmZma27YC7GLW1tczLy+PXX3/NqKgojh8/nhMnTuTChQuZmJjI6dOnc//+/dRqtRaFrWGqrKxkUlISvby8mJWVxaqqKmZnZ3Pr1q3ihNkeKJVK3r17l+S/74spTAndhoYGDh06lE+ePCFJ/vLLLwwMDHzmvuzYsYNhYWFivq6ujuPGjWNCQgJtbW3p5eUlpry8vGd+TidCErpdAWv/Sf7++2+OGzeOhw4dItn4Ajs5ObGkpIQ1NTX09PTknj17OHPmTPGa7du3MzY2liSp0WjEf4DCwkJ6enqyurqa169fp5OTE+vq6tpzmF2KhoYGVlZWct26dXz11VcZGBhIlUpFtVrN5cuXMy0tjSUlJWZXvAUFBVSr1Vy6dCmrqqpeaN8NJ3FLX069evXihAkTOGnSJB49epQkWV5eTrlcLra5efMmVSpV+3a4e2FWrko63U7Es25o5OTkQKFQwN7eHr1798bcuXOxa9cu+Pn5idelp6cjISEBABASEoIlS5aAJNLT0xEeHg47OzvIZDIoFArk5OT0JBd8FtGHYbexscGlS5fg4OAgRnjQO4HfuXMn/vrrLygUCvFYs5eXFzQaDVJTU7F161b4+fm1i+7WklVN83GYe76pkDmtBQiVeA4sSeQOmB16NNbohlNTU1t8jm3evJnR0dFUq9V0d3fnyJEjqVQq+c8//4j3VqlUvHXrlph3cnJieXk5Fy9ezNTUVLE8KipKXEFLWE9dXR0LCwu5e/duxsbGcvTo0QwNDeWjR486rE/WfjkZEhkZyUOHDrW5eqEHIqkXujOHDh0ShTJJ7tu3j4sXLzZqY63QDQwMpKOjI+VyubgJY0hiYiJdXV3p4eFBf39/lpWViXU2NjbiRDBr1qy2HGKXo6GhoaO7wOXLK3xWBAAAB+dJREFUlxttpMXFxbVoo9PpxA3X8vJyKhQKFhYWkiRDQkKMNtK2b9/+gnreLTArV7u3QVwP4Wlc8AEw64Kvvr4eP//8M5KTk1FUVASNRoOioiKj+4wbNw7nz5/HpUuXEBISghUrVoh19vb2yM/PR35+vujMp6fSnoccdDodAgIC4OzsjICAAJMHcbKyspCRkYH169fDzs4Oq1atEp0tvfPOO+jfvz+8vb3h6+sLd3d3eHl5Qa1WIz4+XgzH8/nnn2PLli1QKBTQarXdKZROx2JJInfI/CDx1Dx58oQymYzXr18XN9IKCgqM2mzbts1oIy00NJQkWVBQIG6kHT58mPb29uJG2oYNG7hhwwazz7148SLfeOMNMW/O9EiibbHWFEyPVqvl4MGDRVWHXoUg0a5IK93ujK2tLbZt24agoCC4uroiLCwMKpUKq1evFlec0dHR0Gq1UCgU2LJlixjDSqVSISwsDG5ubvjwww/h5+cnOndpLcTKd999Z+Sur7q6GhMnTsTkyZOxevVqjB07FgqFQnyWIXv37oWDgwO8vb3h7e0t+rgAgJSUFDg7O8PZ2RkpKSlt8ht1J9LT0xEZGQkAiIyMxLFjxyy2lxzvdzIsSeQOmR8kOgxrdMN6UlNTOWnSJKMDGLdv3yZJXr16lba2tjxz5oy48tbrCfXs2bPH5L21Wi1lMhm1Wi11Oh1lMhl1Ol1bDK/bYK0pmB61Ws0ffvhBzEuHaF4I0kpXonWsDbFy6tQprF+/HsePHzdy4advW1FRgeHDh0Or1aJ3794IDw9Henq6VX04ceIEAgICMGTIEAwePBgBAQHIzMx8zpF1Pd5++224u7u3SM1/R0umYECjT4M//vgDQUFBYtnGjRtx5coV5ObmQqfTWQxPJdH2SEK3i3Hr1i3IZDLodDoAjT4dZDIZysrKMH36dAwaNEgMJfS0+Pj4oLi4GKWlpaitrUVaWhpmz55t1CYvLw+xsbE4fvy4kWOfBw8eoKamBgBw+fJlVFVViRsy5tQU33//PTw9PRESEiIKe1MRaHtiFNlTp06hoKCgRZozZ47oYAmARQdLAHDw4EEEBwcbuVB0dHSEIAiws7PDggULkJOT0+7jkfgXSeh2MV577TUsWrQI8fHxAID4+HjExMRgzJgxiIuLQ2pq6jPf2xrdcFxcHKqqqhAaGgpvb29RKF++fFk8FJCQkABPT09R6Jpi1qxZKCsrw6VLlxAQECDqKJtTXFyMzZs3m9UNL1u2TNQLK5VKI8c/vXr1EuuaTx5dGf0hGgBmD9Ho0Wg0mDdvnlGZXmDTCq9gEu2AJd1DRyhCJFqntraWHh4eTEpKopubG2tra8W6rKwso+O/HUFzQ/rWrCDq6uo4YMAAkuT+/fsZExMjlvfv359JSUlmdcOGJCcnc8GCBWK+q1lTHDx4kG5ubhQEgbm5uWbbHThwgPb29nzppZcol8vFQzTHjh2jg4MD5XI5w8LC+Oeff3LEiBEt/DvoD9GoVCrOnz/f6BCNRJshHY7obmRmZhKA6LVJT2cQutaYsOlPSpHkkSNHOGnSJJKNG2ljxoyhTqdjZmYmX375ZVGotCa8X3/9daPfo6sJ3aKiIl65coVvvfWWWaFrys+GfiJqS69gEs+NtJHW3TB0Bt3ZsEZNkZycDJVKBS8vLyQnJ4s+WocMGYJPPvkEPj4+iIyMhI+PD4YMGQLAsn73xo0bKC0thb+/v1hmaMLWmllVZ8DV1RVjx4612EbvZ8PJyclok5Ikzpw5I/rjsMaUTKJjkIRuF8TQGXRSUpKoo+tMzJgxA1evXkVJSQk+/vhjAMDatWtF3ao+zPjvv/+OrKwsuLi4iNdGRUXh2rVr2LZtm5HTdkukpaUhJCTEKIDkjRs3cP78eezfvx/vv/8+hg4dalZ/SRJLly6FQqGAp6cnLl68KNZ1JrthcxuNWq0WgwYNEiMl99QNyK6AJHS7GCSxaNEifPnllxg1ahTi4uKwfPnyju5Wu2CtCRvQKHSbbxgZhkeaMmUKVq5cafZZGRkZKC4uRnFxMXbu3IlFixYBaDxyu2bNGjEI5po1a8wGbbQGa03BJLoxlnQPUup8CUAMgAMG+V4ALgJ4C8DPAMoBPAZwG0BQR/f3OcdqC+A6ABmA3gB+B6Ay0c4FQBmaAq02lQ0GYNf09zAAxQDeBlBg5lk7AMwzyP8JwBHAPAA7zLVrp3GfBTDRTN3rAE4Y5P+nKQkAKgDYmmonpc6TJH+6XQySOwHsNMjXAxjflPUzeVEXhWSdIAhLAJxA4+Sym2ShIAhrAZwnqfeqEw4gjU3SpglXADsEQWhA4xfdJgDXLDxuJIBbBvnbTWXmyjuKXADOgiDIANxB49jfI0lBELIAhABIAxAJQFo+d0IkoSvRqSH5I4Afm5WtbpZPMHHdLwA8DMsEQRjT5h1sQwRBCAbwvwAcAPyfIAj5JIMEQRgB4FuSM8xNRE23WAkgTRCEdQDyAHzXAcOQaAVJ6EpINHIHwGsG+f80ld0BMLVZ+dn26ADJowCOmii/C2CGQb7FRNRUfh2Ab3v0TaLtkDbSJCQaOQ4gQmhkMoC/Sd5D44oyUBCEwYIgDAYQ2FQmIfFMSCtdiR6BIAgaNK5YhwmCcBvApwBeAgCS36Bx5TgDjXrf/wewoKlOJwjCZ2jUpQLAWpK6F9t7ie6EYLz3ICEhISHRnvwXdDSL1UoDD8wAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" } } ] }, { "cell_type": "code", "source": [ "# Ecuaciones parametricas del mismo plano:\n", "alpha = 2*np.random.random(N)-1\n", "beta = 2*np.random.random(N)-1\n", "x1 = alpha\n", "x2 = beta\n", "y = 0.2*alpha - 0.5*beta - 1.0" ], "metadata": { "id": "am5C11gkObrj" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "fig, ax = plt.subplots(subplot_kw={\"projection\": \"3d\"})\n", "surf = ax.scatter(x1, x2, y, color=\"green\")\n", "surf = ax.plot_surface(X1, X2, Y)\n" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 248 }, "id": "dAjPXlADOzga", "outputId": "01cbabb3-2c46-492b-df1f-bd084d0a5cb7" }, "execution_count": null, "outputs": [ { "output_type": "display_data", "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAADnCAYAAAC9roUQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9eXQc53nm+/uqqjd0YyNAgABJgAtISqRILRQd0nZyvCl2lGPHk0TRnLkZx7Ed5+RkcW6Smyuf3JzJvRnH8olyZnzHk7GvnDP2ndhObCfO6mvFq+KxJEqkSImSSJnEvu+9L7V83/2jUe0C0N2oBpokIPWjo0MSqK4qFKqeer/nfd/nFUopGmiggQYauDXQbvcJNNBAAw28ntAg3QYaaKCBW4gG6TbQQAMN3EI0SLeBBhpo4BaiQboNNNBAA7cQxgbfb5Q2NNBAAw3UDlHpG41It4EGGmjgFqJBug000EADtxAN0m2ggQYauIVokG4DDTTQwC1Eg3QbaKCBBm4hGqTbQAMNNHAL0SDdBhpooIFbiAbpNtBAAw3cQjRIt4EGGmjgFqJBug000EADtxAN0m2ggQYauIVokG4DDTTQwC1Eg3QbaKCBBm4hNnIZa6CBilBKIaWkUChg2zaGYaBpGrquo2kamqYhREWzpQYaeF1CbDCYsmHt2MA6KKVwHAfbtlf93f2el2hdEnb/b5BxA68TVLzBG6TbgG+sJVshBEIIbNvGtm00TVu3vff/0dFRurq6aGpqapBxA691VLyRG/JCAxtCKYVt20xMTNDS0kI0Gl1HsOXgkrIL0zQBSp+1bRvLslZ9pkHGDbzW0SDdBirCJVtXOkgkEoTDYWKx2Kb2J4RYJT+sJVJ31eWS8dptdV0v6cYuOTfIuIGdhgbpNrAOUspVOq0bsWqahpRy3fb1Ir6NyNhxHMbGxgDo7e1FKVU1Mm4QcgPbEQ3SbaAEKSW2beM4DrBeHnAj1c1is5/3krErTei6voqM3ReE9zOapmEYRoOMG9hWaJDu6xxuksuyrFIUW4mYNE27LaRbbX/eP124x3DL2dZ+xk3+xWKxBhk3cMvRIN3XKdwaW9u2uXr1KseOHduQeIQQZeUFv6g36VY7jvdPL1yd+oUXXuDee+9d9T2vTOFGxw0ybqDeaJDu6wxespVSIoRgeXnZdzXCrSDNmwlXdnATcy7c6+I4zrpa43KacaOiooHNokG6rxNUqrGthTi2i7xwM4i/0rWoRsaFQoFgMEgkEmmUtzXgGw3SfY2jHNn6iWrLYTvIC/XYRy2fr0bGMzMzRKNROjo6Gl14DfhGg3Rfo3C1S2+EtlmydXGrCe9mYqsE6H7erR12sbbW2IsGGTcADdJ9zcEl2/HxcaLRKK2trVsmWxeV6nQTiQTJZJLm5maamppWaaVevBbJZe3P5Lfxw4vl5WU6OjoIBoONxo/XARqk+xrB2oaGbDaLYRh1fXC98oJSiqWlJQYHBwkEAkSjUcbHx8lms0gpCYfDRKPR0v9NTU3bJhFXr3OoVabw/undx8jICG1tbeTz+dKqpNH48dpFg3R3OCo1NOi6XpP+ujZJVA4u6c7NzTE8PEwkEuH48eM0NTVhmmYpolZKkc/nyWQyZDIZlpaWyGaz5PN5QqEQyWRyFRlXioyrnetWUQ/S8nPN/JyHUmpdZNto/HjtokG6OxB+GhoqSQHl4G5bjfyUUiSTSWZmZujs7OTkyZM0NTUBrDuOEIJIJEIkEqGzs7P09eHhYQKBAOFweBUZV4qMy53PdiKVepCui1plinKNH3Nzc/T09KzzqGiQ8fZCg3R3ENbW2EL17rFaSLdS9CilZGZmhpGREUKhEHv27OGOO+7Y1PlrmkYgEKCzs3MVGVeKjKWURCKRVWS8leoJ7/HqgXqSrl9Ua/wYHx+nu7sbx3FKjm4uGo0f2wcN0t0BcMk2Ho+TSqXYs2fPhg+MpmklyWEjlCsFk1IyNTXF6OgonZ2dnD59mkQiQSKR2PTPUUnTrRQZK6XI5XIlMl5YWCCRSKCUIh6Pr4uMa0kYbhd5od4odw3K1Rq7fzYaP249GqS7jbG2xtY0TZaXl+np6dnws5qmrcuSV9vWJV3HcZiYmGBiYoKuri7OnDlDMBgEbr3hjRCCpqYmmpqa2L17NwDT09NYlkVnZ+cqMs5msyil1kXGtZJxLdiOpFsOtTZ+zMzM0NPTU9KMG+Vt9UWDdLchKjU01JIcq1VesCyL6elpJicn6enp4Q1veAOBQMD3Pm/lw1iOjKF8ZLyWjGOx2Lqfa7PYbqRb67lUImP3HrAsC9M0G40fdUaDdLcRNmpo0HXdt2Tgl3QtyyKTyXDp0iX6+vo4e/bsqmJ/L26XteNaVNpHJTKWUpY043Q6TSqVIpFI8Nxzz62LjCORiO/IeDuRbj20bheVGmkajR/1QYN0twHWTmiodNNvpiKhEkzTZHR0lLm5OXRd5+TJk7S2tm64z0qE57fkrB5twLVC07RVZFwoFLh27RonT55cFRnPzc2Ry+UAfJHxdiJdt673ZqLWxo+lpSVisRhNTU1ly9ter2iQ7m2ElJJcLlfqSPKTHNsq6RYKBYaHh1laWqKvr49z587xyiuv+NpnNe8Fvw/RdmmOcF9sLql64f5eqpFxLBZbVz97OyGlvOmkWwmVyHhxcZFgMEgoFFollXkbP7ylba+XiooG6d4GeBsastksU1NTq5bDlVCLvLBW/83lcgwPDxOPxzlw4EDJPxf8u4dVqz7wg+3SkbYR/JBxKpUinU7z0ksvlSLptZGxn+vi1lxvFfUi3Xr+fhzHKZFquWO8Xhs/GqR7i1CpoSEQCNRdp3W3dUl9aGiIVCrFoUOHuPPOO8sW4vvZ73axdtwqNnsOXjLu6uoik8kwMDBAKBQim82WyHhmZoZcLlfSmKuRcb1kgXqSbr3IzXGcqg0ufhs/LMsikUjQ3d39mmj8aJDuTcZGDQ03IzkGxch2aWmJK1eucOjQIU6cOFHx5vS730rkbJomi4uLRKNRwuFwxePc7ERaLahnna6macRisXVTkqWUG5JxJBJBSrllsqsX6VYiyluxr0pknMvlWFxcZPfu3Rs2frhBTUtLy9Z/gJuEBuneJJSb0FDurVwLkfp5KJPJJIODgxQKBSKRCG94wxs2/Nxm5YVCocDIyAgLCwu0tbUxPT1NLpdbFRG6+qdb67tVbKeoZiOi9EPGyWSSQqHAc889t4qMY7HYhi+xtfvcThEz1I/AbdsuK1PA6lpjgCeeeIIXXniBP/mTP9nycW8WGqRbZyilKBQKmKZJIBCoSLYuaol0qyEejzM4OAjAoUOHaGpq4sqVK74e2FrlBW8y7sCBAxw5cgTLskrHcmWNdDrN8vIyExMTFAoFpJSlh8cl5HqRcS243W3AXjJub28nk8lwzz33lMg4nU6TSCSYmpoin8+X1YzXkvF2jHRvxTmtfbYSicSGVTi3Gw3SrRO8DQ3z8/MsLy9z7NixDT+3lchNKcXy8jKDg4MYhsHAwEDphvNqxxvBb7RtmibJZJKLFy9y8ODBUjJuLYnpuk5zczPNzc2rvj49PU0ikUDTNObn5xkZGcGyrJI1pDfCq1QrXC9slzZgr6ZbKTJ2X2KZTKYiGbsR31bPyXGcukW69VqVuJGuHyQSCdra2upy3JuFBuluEeUaGmpJjm32mAsLCwwNDREOh7njjjvWEVy9DG8A8vk8Q0NDLC8vYxgG586d29QDZRgGoVCI3t7eVV83TbNUnjUzM0M6ncZxHEKh0Krozq0m2A7JOKgP6brSUzVUeol5yXhhYYFUKsVzzz1XImP3BRaNRgmFQr5linpFuvX6PdVKuv39/XU57s1Cg3Q3iWoNDfWSDMod07Iszp8/TzQa5a677lpX1uSiVq243LZumVkikeDgwYMcOXKES5cu1V1XDQaDBINB2tvbS19zvSbS6TSZTIbJyUkymUzJt1dKuWl/hdstL9RrH14y1nWdaDTKwYMH18k7k5OTpch47UtsLRnXU16oF2zbJhQK+dq2Eem+BrF2QkM5vbbepOsOQRwZGcG2bc6cOVPysq2EWh7ktQSdy+UYGhoimUyuKjNzHOeWDaYUQhAKhQiFQnR0dJS+Pjs7SzKZpKWlhXQ6XfJXgNWNCxvVym4XeeFm6J7VImN3ReHV2r1k7P6Ot0s1hXvefiPdZDLZIN3XCipNaCiHzZBuuZtcSsn09DSjo6Ps2rWLe++9lxdeeKHuySfX8Mat6U2n0xw6dIjjx4+vOqft4L3gyjdrPXm9jQvpdJqZmRny+fy6WtlYLLZt5AmoX12sH5LTdZ2WlpZ15VRryTiXy/Hcc8+h6/q6axcMBn2dbz0j5lrkhWQy2Uik7WR4Gxpu3LjB7t27aWlp8aXB1UK6ayc3SCmZmJhgfHyc3bt3c//995eIthbZwC9M02RmZoaZmZmqNb31IM2bRXjVusjWVgRks1ksy+Lq1aurdE+/hOJiO0W6frThSvCSsZsQ3r9/P7ZtlzRjb2TsShne/9deO9u2bwvpJhKJVTLVdkSDdMugXEODZVnYtu3rxtZ1vaa+fC9Jj4+PMzk5SXd3d832irUik8kwNDREPB6ntbWVkydPVv35tkowt6PGtlxFQDqdZmRkhL1795JOp1lcXGRsbAzTNDEMY5VEEY1Gq1pB3k5Nd+1+6kFy3pe/YRhlI2OXjNdeOy8Ze+flbfXnq4XAG5ruDoP7lnd1LW+NrWEYNXWO1QIhBCMjI8zNzbF3715+7Md+rOKbvR56cSaTYXBwkFwux+HDh+nq6iKZTN50UtxOHWmappUlFNfq0jW6SafT2LZNMBhctczeSFP3i3pqun6TTRvtZ6OoshoZe0cuudUUayNj19PY7/1Wi6brOE7d/JJvFhqkS3nT8LWarWEYdXeVsiyL0dFR4vE4LS0tnDt3bsM3+lYi3XQ6zeDgIPl8nsOHD5eczebn52+JzlkvTXerqBZ9BQIB2traVkVLrsTkVlJMTU2VyOXFF1/0NVBzM+dSC+opU2w2YjYMg9bWVlpbWwmHw4TDYQYGBlaRcblVxVqZYi38ygvbSauvhtc16Vaa0FAOtUoG1eBtn+3r66Orq4s9e/b4utlrjXSVUqXItlAocPjwYXbt2rXqQb8ZOvFrCUIIgsEgu3btYteuXaWvP/vssxw9erSUvCs3UNNbSVHu3tqKFrt2P9upI827Hy8Ze+Emb90qFLdZZi0Z+71GLulup1bxcnhdkq7byrq4uFgioI1uWMMw1o28rhX5fJ7h4WGWl5fp7+/nyJEjaJpGKpW6KaY3UkouX76Mbdslst3qPsvBsixmZ2dLY9QrLe+2i8tYvSCEKEV03rI279igdDq9yo93rbfCdkikrd1PvUm3EgKBQEUydiPj+fl58vk8zz777IaRcT6fr5vsczPxuiJdb0ODaZoMDw+vKjuqBsMwyGQyNR3PfaCy2SzDw8Mkk0kOHjzIHXfcseoBqdVpbKNtU6kUN27cIJ/Pc+zYsQ29ejdr2ejKI7Ozs3R2dpJIJMhkMiUN1CUWVwPdLqR7syc+uGVq5cYGeY1upqenSaVSJZLeTGmWi3ol0urVBryViHmtxJNIJDhz5sw6MvZGxteuXWNwcBBd11lcXFz1EqwVS0tLPPzww4yMjHDgwAG+/OUvV6yISCaTHD9+nPe+97186lOf8rX/1wXplmtoCAaDm64w8APDMEilUoyNjZHJZMrWvXr37TfSrLat6zDmOA6HDx/Gtm1fNYt+DW9c2LbN6OgoMzMz7N+/n7Nnz666Nmu7ycbHx8lms6VqkOHhYV8NDJWwHYh7MyhXSTE9PY1pmuzatWudQZCbgFpb1lYO24Es1+6nHvXk3gi+nN4OlEYEXbt2jcXFRR566CGWlpb44z/+Y9797nfXfMxHH32Ut7/97TzyyCM8+uijPProo3ziE58ou+0f/uEf8hM/8RM17f81TbrVGhpqjbpqSaSlUikymQxXr15lYGCglLCqhFonQqzdNpFIMDg4iFKKw4cPl25Kv7KB3+1s26ZQKHD+/Hn279/PuXPnSlGyt5yuUjdZMplkdHSUaDS6yl/WW2PrEkylSG+763W1wo1Qy3WQeRNQGxkEbTdrR9u267LU95NECwQC3HfffZimSTab5TOf+Qyw+WGdf//3f8/3vvc9AH7pl36Jt7zlLWVJ9+LFi8zOzvKud72LCxcu+N7/a450K01o2OrD6ieR5pKf6wtw4sSJit4IXviRDLzbuj9XIpHgxo0bAKscxsptu9E+q72AbNtmbGyM6elpAM6ePbupaMidi9XV1UVXV1fp696OqLXZba9E4eda+sF2GihZjeQqJaDKGQSl02lM06SlpWWV5lnr7+lmJNK2glpqdOPx+KooeLMvj9nZWXp6egDYs2cPs7Oz67aRUvK7v/u7/OVf/iXf+ta3atr/a4Z0N5rQsFVUq9N17RU1TePQoUO0tbVx5cqVLUWvlaBpGul0mosXLyKEKEu23v1uZSKE4ziMjY0xNTXF3r17OXv2LOfPn6/4EGxEZpVWF5XaU71lWtPT02QyGQqFQmk/Xr34dg1l3Co28wIoZxB06dIlBgYGSoTsGgRJKQmHw6skimrXaztWQdwMW8d3vOMdzMzMrPv6xz72sVX/rsQhf/7nf86DDz7Ivn37fB3Pix1Put6GhsuXL3Pq1KmayNbvTb9WXlBKsbS0xODgIMFgkGPHjq1aHtYqGawdQVIOy8vLjI2NoZTi1KlTG44k2ay84DhOqTOut7d3XWS79pq519uPXFOLpBMIBGhvb19FLq5XcWtra6kjyjW82ezUhduJes42i0QiNDc3r6ukyOfzpUqKjQyCthvp1uq74Jd0q0Wn3d3dTE9P09PTw/T09KpVmYunn36a73//+/z5n/95aZURi8V49NFHNzz2jiXdcjW23ukEfuASqZ8OFpdElVLMz88zPDxMJBLh+PHj60yn3e39asAbEfTy8jI3btzAMAx6e3t9z4DyK1u48oLjOExMTDAxMUFPT0/ZzjiXXDdDZvUgQLc7sJzhTTmjb283lEsu20leuNnNEUIIIpEIkUhkQ4OgXC5HNpvl6tWrq66ZXy9eL24H6SYSiZIssBW85z3v4fOf/zyPPPIIn//85/mZn/mZddt84QtfKP39c5/7HBcuXPBFuLADSbdaQ0MgECiVkPhBLaQLxeXuM888Q0tLCydPnqyaKKilbbiSDOBG0oFAoGRU7kZ6fuC3KkEpRTab5ZlnnmHPnj1V25DdqHgz0dDNbAP2VgZ0d3eXvl4uGZXP50tZcS8Z3w4f2ds1xbeSQdCzzz5LX19f2ZFB5SopKh2zXoY3t2NqxCOPPMIv/MIv8Bd/8Rf09/fz5S9/GYALFy7w6U9/ms9+9rNb2v+OI13HcUrzuNberLW26vrZXkpZ8rJ1HId7772XcDi84b43W3vrlS1CoRB33nnnqki6lkaGjTRd181sbGwMKWVVsnWxFeK8HW3A5ZJRy8vLzM7O0tHRsU7/9NtJVi/UM+qu10qi3MigSiY3lQyCbkdCrl6k29HRwbe//e11X7///vvLEu773/9+3v/+9/ve/44jXXfefTm4ka5fVCNdKSVTU1OMjo7S2dnJ6dOnuXjxoi/Chdo1Xdu2SyN4QqFQRdmi1jE85baVUjI5OcnY2FjJzezChQu+Iort0uCwVei6vq6tt1onWbmStnqgXp1kN/t3UsnkppJBUC6XY3BwcFWyczNz72opPdsJDmOwA0m3GuoR6Xp1za6uLs6cObPqAfMbmei67qttWClFMplkfn4eYMMys1ojaC/pel8kXV1dZa0ja91nLdjuhF2pk8w7i8xtXsjn8+TzeV599dVVZFzr9fQOprzd2MzvppJB0Pnz50srCdcgyHGcUqu4X4OgWhNp291LFxqkW9retm3Gx8eZmppiz549ZQnJJTw/N8FGbcPe4ZKhUIjm5mZOnTq14X43E+l6J1B0dnaue5HUgtstL9QDtS7pyzUvOI7DpUuX6O7uJpPJMDs7W2qBdgdqepfclYi1XvLCdjLNcaW/ciuJQqFQk0HQzSoZu53YcaRb7ebajLxQKBQYHBxkenqaffv2VdU1XZL2cxNUikjd6oehoSFisRgnT54kEAhw+fJlX+dcS6QrhGBpaYnR0VE6OjpWTaDYLMo1UrjeEi45VWrv3U5+uvWAEKJslOe2QK8llrUlbfUs0aoH6qXDVvr9bMYgyM3fmKa5YRmgZVl18RS+2dhxpFsNtTiBmabJwsICiUSCw4cP+/Ky3Uq77lqyPXXqVEmrcr0h/MBPpKuUYnp6muHhYZqamupCti68FRGubpdOp+nr60NKuar8yJvxdkuP6nH87YBKEWqlFmhviZa3BbpQKGBZFm1tbaXrVOvvql4voXqSbi0vkmoGQZcuXaKpqalkELS2bdx9ee0EsnWx40h3q5FuoVBgeHiYpaUl2tvbicVi9PX1+Tp2LfKFt653bm6OoaEhWlpauPvuu4lEIqu2rcVwphrxu1ODh4eH2bVrF4cOHaqb8Yj3XAuFAuPj48TjcQ4fPsyJEydKnYDl2nvT6TTz8/OkUilSqRSXL18uEczt6Ci7HaPTvUThvUZXrlyhu7sbx3FYXFxkdHS0VPboXh/3c5VWWNvNCL1e5WLuufT09Kza39oR8//4j//IJz/5SZLJJL/2a7/GXXfdxdve9jaOHz9e8zH9OoyNjY3xoQ99iPHxcYQQfP3rX+fAgQO+jrHjSBcqL1OrkWIul2N4eJh4PM6BAwc4duxYqXTIL2ppeNA0jUwmwzPPPENrayv33HPPOrL1/jx+US7SVUoxOzvL8PAwbW1tnD59mlAoxMzMTM12lNVgmibJZJJEIsGRI0fWWVSuxdr2XlcHvfPOO0vL77UdZV6vhc0U5d8q1LPUq7m5ed294bbzptPpUgu0NxHlXqempqZt10VWiw67Ecr9bGs19oGBAR5++GEefPBB3v/+9/PSSy8xPT29KdL16zD2vve9jz/4gz/ggQceIJ1O13T9dyTpVkI50vWOFT948CB33nln6WHZTOJtIxnAjTaHhoawLIuzZ8/6LjPzA+8LxxtFt7a2rqshrtdECMuySjPcgsEgR44c2VKWuNLy2zu1d3JykkKhsM70Zqvz4eqFmx1dlvNXqNTS6+rIIyMjW2qB3m7k7cLPz5FIJNi1axdnz57l7Nmzmz6WH4exV155Bdu2eeCBBwDKlnZWw2uKdL3yQjqdZmhoiFwuV3GseD2bKbxL+/b2du655x6uXLlSV8KFH5Hu3Nwcg4ODZcnWRa2ku5ZIvL65fX19nDt3jmvXrm3p3CuhnNcsrDe9SSQSJQs/r0RRiy/v7ZAX6rGfSi292WyWa9euEQ6Hy7ZAe19a1UratpvDWC2oV+WCH4exH/7wh7S1tfGzP/uzDA8P8453vINHH33U98+8I0m3mrxQKBS4dOkStm1z6NChdfPA1m6/VSNzN2k1MjLCrl27Skt71/WsnnCTcdlslvn5+aqSBdRGul5PBdfwZmJign379q0yvLnVJWNrTW+WlpZYWFhg//79JYlibm6ObDa7rlV1M0kpv9huOmowGGTPnj2rvua2QLua+vDw8KrJxl692O1e3E6Rbi33SjKZ9GXYD1t3GLNtm+9///tcunSJvr4+Hn74YT73uc/xwQ9+0NfxdyTplkM8Hi9Nuj1x4oSv5e9mIl23OsJb+9rR0VEiWxebeSArPchuTe/g4GApqjtx4sSG+6u1ptdtDBkfH6enp4ezZ8+u0+a22hyxVbgPghvxrW1icEnGm5TykkwsFqvLy/B2RLqVUIksy7VAu1KEe528LdCumdDc3FxJL97MudWLdGt5CcTjcd+ku1WHsX379nHPPfdw6NAhAN773vfyzDPPvLZJ170RlFIlL1vDMBgYGODll1/2rTfWOhtM13Usyyr5FdSr9tXd99oEhFKKxcVFBgcHaWpqKpWZPfXUU7726ZcgpZSYpsn58+c3NLzZLg0O5VDJl9dbNzs+Pk4ikShlwL0VArXooPWMdG8W6ZaDt6RtbePCyMhIqXnBXT2sNQXyM79tJ5vd+HEYO3PmDPF4nPn5eXbv3s13vvMd7r//ft/H2JGk6615DYfDJQeumwkpJcvLy0xNTbFv37661r7CanMa1/Tmxo0bRCIR7rrrrk1NTdiIdL06tJSS06dPb5gUqES627XKAFg3Pt0tX+vu7l7npqXr+ioijsViZR/87WRUUw9ZwI1yw+HwKnvEteVZ7vy2tUY33utUr+qFWkh37dSIzcKPw5iu6zz22GO8/e1vRynF6dOn+ZVf+RXfx9iRpDsxMcHi4mJZMnKXyfUS8r3mMC0tLXR2dnL06FHfn6/Fq8FxnBLZhsPhimTr1vVu9KBVIl1v1YNbYvbyyy/7usHrVRFxu+FGcNFodJ0VpJu4m52dLQ369JZqxWKxukX7N1NeqBWO46xrMqg0v801ukmn06uuUygUwnGc0hy8ai3QG6FW34WBgYFNHccLvw5jDzzwAC+++OKmjrEjSbevr4/e3t6y33N12lpIt9yN79oejo+Pl8xh3JZhv3AJys+52LbNCy+8UNUYfe1+ayVdrzbc3Ny8qurBb4PGdpAXtnr8akRnGEbZ1l5vqdb8/DzpdBrLsnjllVdWVVHcrMRdNdyOoZSVjG4KhQI3btwoJWPdOnGvt0IsFvMl5dwOW8dbgR1JutXglo35bQtca2TuJVvX9tD9nneMux+40Wu1G8edCpHNZjl69Kgv53u/xjte0l1cXOTGjRurtOFK21ZDJdJ1B4LebJnhdsgY5Uq1kskkk5OT7Nu3b13iLhAIrBuoWeke2E4VEFtdIbreCqFQiM7OzlJupVIL9EbVJjdrVM/txo4k3Wo36mZrbzVNK1k6Vkom1dKR5m5fqZg/Ho9z48YNdF3njjvuYGJiwveLwi9BurPXnnvuOQKBACdOnKgYQftNKlayixwZGQEoEY5XF90uhi71hOsvUG7p7Sbu1hqkew1v3GivHqhnpHsz6nQrtUBXqjZxR8y7wZAf8k0kEr6rF243diTpVoNhGDU5jem6ztjYGAsLCxXngnn3XTqN6fwAACAASURBVEtHVDnSdcema5rG0aNHS5n2rZjplEMymeT69evkcjlOnTq1YaKxVnnBm4RzTd6FECVN1K0UcDum3BZf27YpFAobZsBvJm52c8TaxJ27vevJm0qlmJ6eJp/PlxobvC+pWj156xnp3krvhWrVJplMhvHxcfL5PC+88EJZXd071SORSOwIL13YoaS7kemNn2jUHS++sLCwYZmUn+OWgzfqdslWCMGRI0fW3Wh+x6VD9Ug3nU5z/fp1HMfhyJEjvPzyy74qO2qRF1KpVMlTwq1Ptm27VHi/lnC8Lb6O43D16lVM09zRUXGtxO1N3HmjvfPnz9PT01Nq8nAnL4RCoVXL7tfq2PRycFug4/E4sViM3bt3l9XVc7kcS0tLfPazn2VhYYHz589z//33s3///k29VP2a3fz+7/8+//zP/4yUkgceeIBPfvKTNR1vR5JuNWwkL3jNynt7e9m7dy8dHR11M+jwQtd1UqkUQ0NDKKUYGBiouATyO7nX3e/abTOZTKk5ZDPeCH5Id3l5mZGREQzD4O677/Y9RsXb4js+Ps4999wDrK+fdZMublTsTU65N/V2aUiop/l4uQaGQqFQ1RTIe21qmYBdDduNvL2yQqUWaNM06ejo4Ld+67e4cOECn/vc5zh69CiPPfZYzcfzY3bz1FNP8YMf/KBUufDmN7+ZJ598kre85S2+j/OaI91AIFAyQPbCtm3GxsZKdbZua+vQ0FBNOq1fpFIp5ufnWVpa4vjx4xuK/Jsdw+N62mYyGQYGBqq2PVdDtaoEV6rQNI29e/eW/E/Xfr5WbBQVLy8vMz4+vioqdscg3W7z75s58cFr9l1uzPzaa2PbNtFoFCnlliYbbzfvBT9abjAY5PTp0+i6zsc+9rEt/U78mN0IIcjn85imiVIKy7JWlRz6wY4k3VoSaV7Tlr17964zK6818QbVH7hUKlUqmXEJxU9W1e128wNN0ygUCrzyyislE/bdu3dv6YYrF+lmMhmuX7+ObdscOXKE1tZWZmZmSlHXzUAl4xs3Kl5YWCCTyfD888+v0orLRcU3E/WKlmtBpWtz/fr10gTetZONvRLFRqZA9XyR1eN3UGvp51aP6cfs5ty5c7z1rW+lp6cHpRS/8Ru/wZ133lnTcXYk6ULlyMzVdC3LYmxsjJmZmXWmLV7UMm0CKpdrpdNpbty4gWVZDAwM0N7ezujoaE2SQT6f33A70zRZWlpienqaY8eOrbKq3Aq8pJvP57lx40YpevZaMNZiuF5PuFGxrusopTh27NiGUXElrfhWlLb5Qb0mAQshaGlpqTrZeHZ2tuw0D6/z2HYakgn+tWG34sEPtmp2c+PGDa5evcrExARQbJL4/ve/z4//+I/7Oj7sYNKthqWlJZ599ln279/PuXPnqt5IGw2QLLe9d9mTTqcZHBykUCiUlvcuaikx2yiR5nrazs/PE41G2b9//zpXqa1A0zQsy+LatWssLy9XjJ63Q3OEi42i4koVFKZpYhjGlsi3XpHuzWpqqDQCZ+00D6/zWD6fZ2Zm5rZM8ygHv3W6iURiXWK6ErZqdvO1r32Ns2fPlu65n/qpn+Lpp59+fZDu2offJaWZmRmEEBuSrYvN2jt6E1eHDx9eFQ169+03iq6USFvraXv27FkmJia25JNb7hiLi4uk02mOHj3KsWPHKm6/nUi3EjbSiuPxOLlcjvn5+U1XUGynZFwtskC5Mi3Xeez555+nUCisS9ytnXNX7ZzreW/4fSndSrObvr4+Hn/8cT760Y+ilOLJJ5/kt3/7t2s6zo4lXReuY/78/HyJlC5evOj7JtyMpnvt2jVs2y6RbaWbcCu1t25J2+Tk5LqIvZZKB69P7lq4rZqTk5NEo1EOHjxYsb3axe32Xtgs6XujYncs/b59+zaMiitpxdvJM2Gr+3GdxwzDoL+/f9V+K03z8BKxd37b7Uhw1qsxwo/Zzc///M/zne98h5MnTyKE4F3vehfvfve7azrOjiVdy7IYHBxkfn6e/v7+EinVah7ul3TdsT/Ly8scOHCAAwcObPjQbYZ0vW3Ivb29ZacUu1KAH5TzafCa+Li+udPT0zvGe6Ge8FNB4TpreaPifD6/IyPdWlBtmkel+W2RSKS0EtysH2+tqJfDmB+zG13X+cxnPrOl4+xY0p2amiIajTIwMLDqhttKA0M5eMeMHz58uGSIXYtzmB9omkY6nebpp5/esFljs+Vla7vIvL4SO8nw5mZjI604k8mwtLREPp9nfn5+0xUU2yXSdffh99mpZHaTz+dZWlpicXGR4eHhLU3zqOUe20ndaLCDSffAgQN1GVJYiXTz+TyDg4OkUqlVM9ZSqVRNybGNtnXH/QwNDSGl5Ny5cxtmYjczEWJ+fp4bN26smha8mX1Wm0acTCZpaWnZUPu73dUDmz2+Nyp2E5+9vb3kcjlSqRTxeLxsVOwmptauWLZTpFsPiSISidDa2koikShN4nWj3kwmU9YUqNL1qdXsxm8ibTtgx5JutZvVr98srDd6yefzDA0NkUgkOHToEMePH191rFr8F6pt6xLV0NAQu3bt4r777uOll17yVfpSS6Rr2zaXL18mFotVnanm1/BmbaS7sLDA9evXaW1tJRaLrdP+mpubV2l/1aCUwpY2Ab36NbjdkXbezjOSHKEz3LnKzMULb1RcSSuuF+pBujerMcLvNI9sNlsyBVpbxrbRiymRSNDX17flc79V2LGkWw1u9FqLt+nVmat88cIXyeayPHT3Q5w9e7bsL7uWioRy5PjNwW/yF8//BdlUloePPMzPnfk5wuEwUsqaJAPHcTAdk6Be/mf0Gt4cP368bPlL3s7zxZe+yHB8mEORQ7yx/Y0ALOYW+a0nfovzk+fpbOrkz97xZ7xp/5uAH5FuIpHghz/8IaFQiLvvvptwOEyhUOCfZ/+Zr1z7Ck2BJn7n9O9woPnAqjbfTCbDK6+8soqMg8Egn37+0zz6zKNY0uItfW/h0+/6NM3B9Z4RW40Mry9f579c+i8UZIEPig/yht431PT5pyef5qGvPYTt2DjK4efv+Hmm0lN0NXXxi3f9IlPpKTojnbz9wNvLasXeqHh5eZlsNsulS5c2jIqrYTuRrt+Ghkpaei6XK2np2WyW5557rjTNw5u880bB8XicU6dObfncbxV2LOn66UrzQ7qFQoEbyzf4T3/zn1C6wggYPPv0szy+63Hu6Lxj3fabrUhIFVK850vv4ZmZZwAIaAG+u/BdPvbyx3j4+MP83tnfqxrBxfNxHnvmMV6Zf4WgCPLizIuo/6m4s+NOPvWuT9HbXKw6WNtFNjY2VtZC0JEO7/uH93Fh6gIKBRJ+et9P86mjn+JX/vlXuDB1gaZAE3OZOd7/j+/nm//umxxoO0ChUGBpaQnLsjh27FgpgpFS8vgLj/Onz/4pAoFUkg984wN89d98lVN9P3ogLly4wL59+1hOLTM2O4YaVTw19xQff/XjxZExwuDJsSd55LuP8F/f+V/LnvelpUuMDI1wqPUQX331q2TMDA8efpA3739z1d/H9aXrPPBXD5A20ygU/zDyD/S19pG1spztPctjb3+M1lDlLHjBLvDQ1x4iaSZLX/vCK18AQEPjr6/9NdFAFIHg7N6zfOW9X0HXylscQjFCm52d5cCBA6XE1MTEBJlMphQVR6PR0guqkla8nSoptmJ2470+oVCo5MTnnWq8dprHX//1XzMxMcGpU6dqkiTW4itf+Qp/9Ed/xNWrV3n22Wcrzjz7xje+wUc+8hEcx+FDH/oQjzzySM3H2rGkWw2ukXk1FAoFhoaGuDE+zT+Mfh+cXXQE2xFSsJRY5pNP/g9+68xHAIVSIASgYCm+zPJynOuZRX4w8TQCwZv3v5ne5t7SdlIpUICA6zMJ7EvX+JPvf5yLC+Po9FDkOAFIJlIWjy/8A6+OLvOOyE9iXBtjOb+MUoq2cDu6JjAdm//ryT9mNDWMjsFkagpd6PS39vNSfJl//z/+d/6Pc3/I5MQE+XyBnt5eWlo7uDK+xPDIAhNpRTQWQ0qFJgQKxbWFV7lwdZaQNoAQGrZj8fcvPs/bey/y3MvThPQjSKFhCIlp2/zFt7/NQb2fdDqD0DTuPNbL0z+cRqopDE3DtB0++71vQ74fXYQwEOScDP/3v/wTP3s0iKFrWLZkaGiO/+faN/nu6JOAYGDXYTrDnbA8gKHpxWsoFf+yNMh/XvwngsEQTU0RwqEwwtB5/IXPMBgfRCiDpB1HKIHA4L9/+wf87LH38hP734YuNHRdULAchICgoZPK53ns2T8lk+lFl0E0oWGLAiOzQUJaO98YH+bq1d/nw6c+zKI5yxeu/BWJQpL9rb38wrF/S9iIkrbiqLnjRGwHhQQUQhnFv2sOQgawmuawIxM8M/kMXx/8Ou8+UrmcyE1eua5a3mSQN+rzasWuZOOSseuBsVXS3c6+C5WmGudyOe6++24uX77Ml770JT75yU/S39/P3/7t39Z8vLvuuou//du/5Vd/9VcrbuM4Dr/+67/ON7/5Tfbt28eZM2d4z3veU9Kv/UJsoI9t2zS1lLIisV67do3du3eXbVgwTZPh4WEWFxc5cOAAXd3d/NynP8xIPImW78DMBTFNSWuwnRPdJ9CFwJYSHYHQBHmzwFJqiaHsEFKCQKJpBqe6TtIcimGvPEiaEBTyBRLJJKFQgIuLz5OzcyCKJI5SoIGGjgAigSbuaDrGvFokno+jpKQ50kzUiJFz8sykJzEIggamlQMlaApF0TVB3rS4p+0UzbEWNENHIcnYaZQEzdJoCjeh6Tq6phEvLPPq4g3ydpaCXSCohxArp+NImzf3vZn/OfEUoBAr/0llczByiD1tvRiGTi6TJdbcgqBYvO4oCUrx9NQzFAp50AQgkMqhr+UAR3YdwpYOQghG50cYzY0BGpoobhMJREibSQQ6KImDIqxH6I31oguNXYEOBDCXmWc0M4SGRl5ZFF8flF5wAM3BZk51nSIaaCJRSDISH0HiFCdH55dXzlXCSlQnFBi6AUqglMOb9r+Z81PP4TgmQugoIGxEeOPes1iOxZNj38PBAaUBcuVtrIGQK/8UoElEMMODJ9/I//q2f8vRfbvRtPWkuLi4yPLyck2zvSzLKmmhrmacTqfp7OwsLb2bm5tr9qBYXl5mYWGBI0eO+P5MOUxMTKBp2ob13hthZmaGQqGwqm64Eh566CEef/xx9u/fv2XSf8tb3sJjjz1WNtJ9+umn+aM/+iOeeOIJAD7+8Y8D8NGPfrTcripe/B0b6dbqqes2USwsLNDf38+RI0dKy6n3HHsj/23kv9EUnEUgSGUtfunw/4aW7WJiPs58MkO+YKELDQ3BdGYOBUQCIaQE08kxlZpmwDiEoWnkTJNcJlt8HoWguaWFYDxA3iwghYUSAk1pSOkgxEptsZLMFxZZtJcIBTTihSzJQgI0gVA6ChtLOGhSRypVjKgdheU46JpGa1s7AU0nYaZ4bvICtswjhEZMb+Pe7rsIahHSZpoX515CKA2hdGxpoyQYegCwiRjNGFqAO3Yd5driqziOBQJaQu30d/WjCY2cZTKYHCYRX0ZKQU9sD0c6DgE6B1sOcG3hKlIqWHkZ7Yl2o4QqZvsdRcbJABJdMwCJUMWkZzQYI2NlcaRCYpO10wzGb6ALmAk2c9+e+zEcgcoVCV1IWXx5CVFkzuJdgeUUeHH+RU503MUL8y8U3yZCo2Dni68QAUoTrHx45R5YuZd0SFlpwEE3NFAKpQR5lcZUFkE9wKmeU7w4ewWUQgpQUiGERAmKL1RAKIFWaGVpOspjX/1XIqEAWbHAxfT/hxOd4mdOvo3/8Kb/sKk24EAgQHt7+6qo+Nlnn+XgwYNlmxjWdttVIqR6Rrq1mrBX2k8t1Qvu9ajXQNpycBuVXOzbt4/z58/XvJ8dS7rV4J0e4bYHz83N0d/fz9mzZ9fd6Ge6ztC5p5O/GfwbFIpffNMv8s7D7yx935GSV8fnuTw4xY3JOa4uvYhmaiuRnkBIHYTCkZJUKoVSikhTE+FQkKWlZZRUHO86zrOTz4HUkUiUrtCkjtIcDAIcaj/IfHKegK6TKqRxsFYiRoUSDgINhUIqCxAoJA4WuhbgRNdxDE1DAS/MXsZy8hiGgVSShL3MVHaagV0DpHIpQKKQ5J08uiZwlE2T0UR7uJPe4F6EJugMdXAkNoCJSawpSne0G5TAlAVeXniR+cJCUUfUYDQxRNpKcnrPaXpiewjqAWazcxiazr7m/UT0CLrQkEqhaRAyQmBCwckjWSF9zeDNe9/IxZlLJHNxCspBSYXCQQlIFhLMZmZoi7SiliSmsoskV1oxKJACAWi6wLTyjC6P4EgLnQBQJEbpRqIKUAJd01FCYksLFBiazg8XX8VBoskVghZFvTug62hCo6epG9EtuDJ3BR0NUyta/GlSQ2muvqpzvOs4zcFmFDCbWuDi1AUQXaDt5os3prny/Cf4X07+JEf3tPCDiR/wdz/8O8JGmFggxmR6kkNth/jQ3R8iFty4yqHSZGNvVOy6jymlSu5j3qj4Zo3q2Sxs2/Y9ziibzVasyvGimtlNuZbfm4UdS7obJdLy+TzXr18vkW01LwbDMPiJnp/gZ+4qf+F1TeN4fzfH+7uxLIuu3cP8v+NfRmS7yCUimCmDVj1KMpkszr4KhbCkLC59V05zV3gXb9r/JsaWx7CUVZQAzBzhQIC9sT66Y12kM2myVh5H2sUPepbNK0yBhoahGWiahiYMwnqIoeUhJhKTHGo7SM7OomsGQlEkOylJFJIgQBc6jpKYtomGAKWhCUWT0UTUiHE9eR0tqbO/eR97O/ahaxqgkAoGlweZy8wQLyRXIjQADakkaTvNcj5Oe6SNzqZO2kK7ip8VxReWkMXI3JGK3cHdzOSnKZgWQoAmBLZ0mM/O40gbQwuStwvFVYIUCAVKCBYyi0gcdE1H2s7K14tBrpICVv4uHYmmG0TDMZbNBXRNIAGh9KIEoIqXVIiidqxpGjYOINBFsPhCdBS2kCip0IXOvpY+NIoVI0LAUm4JoTQ0XUPYK78rASE9BAoiRoQfLrzKkDbMic7jLOWXcRToAmxHoZTBS8Mz/EPuh8xmFhjKX0EFE2TCI+SahkArrtL+4w/+I5998LO89+h7a3gyfoRyUbFXK/ZGxVJKgsHgqqGat9OT129SzJVH/awYqpnd+MHevXsZHx8v/XtiYoK9e/fWvJ8dS7pQvjvKtm0WFhZYXFzkyJEjvoxvavFf0HWdUy2n+ON3HOFLV75EJp3hre1v5d33voflAlwenGJoeom55RTxTB5RlG5xpKIlGOP47uM4SmLoGo5UKKEICB1LOnSHu7GEScZMg3JWCFcrJmqUhkBH0yBghDCtPJYwsaWJJnRawoJrS6+io2NjIVQAlEQKh6geQ6HoaOogHI9QKORxNA0NiAZixHNxUrk0mqawpMWVxSV6rF72x/oZS40SLyyTtwqEjCBFrVdDSQeERCCKS2yKcocQIDRRjGwViJW3hpRqxS5PwxBBNFFY0UPBkQVG4xNkzCSmI4vcKEpZSZQmSRQSLGRnEZogqIcJ6AEyVoKgHgalMKVV3F7B4baDCKEDWvEFtiILaZqOLgyQEonCVpIgQRyVAwSWVSBoBIvnTvGBdpRkOj1Lzs5xZ8dxgrqBKH4XJGgI5ErkLKXEkQ4Fq/jSMLG5OH2B/S0HEChMx0bJ4s9lqgLT6WmmsjMgw4hCmEC8DUO/G2kkcUJLWLEJPvBPHyT6b6I8cPCBsvfjZjx5y0XFo6OjmKa5ypN3bVTsx/BmKxUEXtRK3rei2ebMmTNcv36d4eFh9u7dy1/91V/xxS9+seb97GjS9cLrxtXR0cGePXtW6S/VUAvpuh1Zewt7+UDnBzj0hkN0d3cjhKAHON7/I7vFpWSWrzzxJJYRZXI5xUI8g0KiKQFCsBIMAqALQUAE6I7uIWEmyZpZJMUElSZ0QoEQjrQJGSFsx1zREIsRlqPslYoJRX/bAUbjw5jSQiBoDrbS17wfKC6nj3feyaXZ59GETkAYSOkgsQnqBhk7g1yJBBdy88xl5tCEhuVYWNLCsayV6HulI02BEpJosImWUCu6EOiahlJFMtY1sSITgKEXo2wNsDFRKHShgRBYjkWqsEws1EKikMAGUAIhFGolQte0InErKZFaHqRECANLFSc5a+gYmkFf6z7GkhM4ysYRNjoGzaFmOps6eHXxh1iyAMIBWdRyHa2wokE7CA0sxywm3twXunAAm0QhwUh8mBNdd7C3pZfp9BRSOOgYKGmjBzQiWhOJQgJNL+q6AI5wkBQHPipporSiLBUMBJnMTq3o/oArTSjQrRY0q4Vgqh+lSX7/c3/HR9/WzX0DvRzuLRosvTz/Ml+59hUc5XCXvIsznPF1/1aCEILm5uZVdqGVouJqWvGtjnRrNTqvhK997Wv85m/+JvPz8/z0T/8099xzD0888QRTU1N86EMf4utf/zqGYfCpT32Kd77znTiOwwc+8AFOnDhR87F2bPUCFJNjrln59PQ0+/btY//+/WQyGYaHh30XTI+NjSGE2JCkLctieHiYkZER7rrrLnp6ejZ8w16+fJkjR44QjUZL2vCV4WmuT84zH88Qz+TQEAgNFpfijBVGWMgtggMONrqmEw3ECAVDWJaFJW3yMot0ZDGK0zSUhEgwRFiPcGzXUQJ6kOV8HKUUmUKKgrTY3dRBV2w3w/FxJtPjmHaBgAgRNkIgIF1I4ygLoenFZbVWrNoQSqA0Waq4EEJQjGuLt0ZYj/DmvnOE9AiObaPpRW1ZrdR9FvNVRZ1ESUUileDS4kUKWMUIWSsyTlgP0RJsRipF1sqSd4ojl4qSg4FUIJWzoidoCCBkBJASHGGjKZ2QEQYUhmaQMTMU9XCIGE040iFnZ1dWDYAoVh+4NRrevwsURRYsvlR0dCJGEwHN4Gj0GEIT5Ows8+YCeSdPXuUQSmA5JpYqvpiE0IsKkZQcbD9EUDcYXBpE1ww0rZgMlY5FQA9RsPMYuk7eXmm6EW6ir7hSiAZjvHHfG9E1jVDAIBK1eGL2S4jWabRgDtuy+eS7PomhGbSGWrm76+6aI7/h4eHSEMiNUK6Cwo2K0+k0/f39tLe3bxgVV8OLL77I0aNHN9R1FxcX+eVf/mW++93vbuo4NxGvveoFgPHxcUZHR9m7d++qyRC12jVu1GXmjaL7+/uJRqO+S2K8DRJebdjFUjLL8zcmuT45z8WX8rycTIFSBAJBgiJIzs5RkAXaA20oI0LOzBEVUebSswT0IJa0EEJhORZ7mnpoi7SjaYKgEeTawtUVfVhnNjPLeGqCjJnCkQ4KhaNZHOs4SdbO8srCKyt5KQeBwKaoSWuaQBc6Nk6RbAUE0GkKxnCUTdgI89L8y6CgJdBGb8seIoEmENoKQa/UOa+k/pbMJdA0DHQ0oeNgo3CTWkWN11nRvINacOVTxWMLTawQWvE8woEmDC2AoemgFOmV1YGpzBXlQsNRFpZdwJQmrjRSrDJQP5IJinpG8V/ClXKKsoZQxeWI0iRtkTba2ttAKfS0IBKI8FLiJTSlk3dyKwVs7v4dhNLQdZ3+1j6kkownJ0vla5aTJ6AH0IX+o1XASiWLEqpE/QA5K8e/jnyXlkg7A20DjE1MkM/vJTB3EC1okhMzfOiL/ydd3SD1HPftuY/fvv+3OdZxDE34q46oJZFWTSu+cuVKabJxrRUUXtRiYF4Ph7FbiR1Nuq2trWXH8Pgdw+6i0vQI19N2ampqlaft2NiY7y6gjTrYdrU0ce5YL51ahjubD5Ca+QY3ZhdJLIVwss3oeYOI3lYqCdU1A0PTCOthNF0rVkCoIqXtae5eiUiLkZjlOIT0INJR2FIRzy2D0NCFRkADy5EMxge5Z8/djCUmSVvxYh0rAqSDJlYiMlUkk7BugFCYtkMyH0fXdSJGhHg+DlKSyKdYzM3TF+mnKdBEIGCg6wZpO8NYagylJDkzS9gIYzk2liog0GgONhM0AuStPCiwlY0mDEAjqAUpOOZK5KfQRLEqAwW2Y6MLHeloaFpRrlGOhqMcHOWsnLfAwiq+QlQxomUlSac0B9BAFrNwSohi8k6j+EJwitqyQuE4Fr2xHkwnz1higmwhTUu4FW1Fv0YWE5fCkQihYyuboAjQGe6ikM8TMiLcvfsUo6kRsmYx4g5pYfJ2FgeJVBJNCCKhGHkri6WsFYnGAFlM7CXNBK8svkw0WHS5c3DIZW1M1YKeaie9FCOjFvinV8d46uXf5oFTp/jE2/6EgB4gWUgyn52ns6mzbNed4zhb6khztWJd1xkYGCg9G34qKMppxX5linp56d5K7GjSbWtrK0totYzJgfWRsZSS8fFxJiYm6O3tXUfsleaklUM10l07iywcDvOupnfyL8F/IXiwGOWmCwnCwqHFjLG8JJhezNOu91AomBQoYEsbhKI12MJEapL+VoOWQEuxU0sDx5E4tgRDFZf+SqGttKYKocjZeUJ6mDt3H+XS1PMYGiAEkUArOTONdLlKKTTNwJIWmhAITceWDkvZRQJakIARRiqHYCBEQc+zu6kTx3HIFjIr9bYGhl6UGwp2luZgK5oWw3JMept76I31kigksaXNWHKUeH6ZEkGKFf13peFCCI2wESnKCFaWJiOMlIqQFuFQx0Femn+ZglRF/VzooAQBpWMrB6UJVMnG0PN3BcU+QZ2gCBRn1ilFQBg0h5tRCgbjwygcbFWsbJjJzmCvGKKjZLG2RIARCICtiIaaycg0g8lBBmJHihJWYD8JLcloepSCncdRTjHCRSClwnZsYoFmUmZyRZ5QpQoMlMKRDtFAlJn0THHFslLGoYQiZaZBhRHmPnL5EP80mWfx2n/nUM8uvrv0JfRYAkPT+cM3/eG6lumcmauyIK4NXvKspYLCGxW73tIbEW+DdLcJNuup6zX3ruZpjR7fVwAAIABJREFUu1XSNU2zZIjunUW2tLTET/X/FN27urkwdYG2cBvvPvJuvnrtq7w8/zLtbXDm/gF+8/Sv8rUnvsdXx/6VidkMYToxZBRLWiTycWJGjBABdEsjJ3PoukAjQEdkF/OZeWzHoah9FrVKFLSHd9Ee2IUe0giKMEIIFpWDRgCFpCXUQt4usJibQ8NAOjZKK9a+2soEqdBFoLgoFqDpGoZhkCOPETDQhEaykMaSeUxpEc/FAUXICBNPJ8iZeQpOgXghgVwp4bIcG4XE0AK0hlpIF1IUlCQognRE2otNHmaa1nAblm3TFeugJdRMNBDF0HUyZgaDYqlYJBAlWUghlSzq1m75mKaXkpsKARo0BaP0tfQzmhyjKRAuLfPTZgqdIE2BMLayCYgAmigQCBosZYvJwVAgQt7K0RxqIWwEUCpAzs7jBG3aQ0Vzl1bVypK9xGJmAYdiVB4QATRdw5YmabmSKIWitKKKUkNACyA0iBfiBPUgBfIr+rrrrLcSuSMxHRMBDM7O8fzYqwgGCAZAC2X5vcnP8PhD+znZ10/GyvCJpz/Bt65/i+iLUT5874d56M6Hanp+akWlCgpvVGxZFpcuXdowKm7IC7cY9SoT0XWdVCrF008/TVdX1ypz73JwSXqtJ221baGoUw0PDzM/P8+BAwfWzSLTtGLy5sGBB3lw4MHS13/nx36HydQkCsXe5r0YmsHx3m7+3aF7uTh3kb3Nu8lmFa+MpAhndyESOQpSccee48RzS2QKWXa3dBILxnh+5jLxwjK6EIT1Jo7uOrzynAr2hPcwL+fJq6I+2RHp4tiuI8UIWSpenn95ZcnuIDVZLB0TRaXUdhyaIk1IBR3hToTQEAICWhBHFduSEQJTFq+FbhTrjBUKdJjOTAErkbgQhPUIjuYgpU0wECLvFBCagVhpDkmbWcJGsFTNIYVkJjPLcm4ZiUMsGMO0CyhVXP7n7Ty7I7tZLiwVVweyOFVYahJNuSsAgSECaMIgFooVl/BSFSs4lIkhQrjRt1w5T0MzuH/P/RSsAnPZOWxsplIzBPVgqX64KIy4OjLousGdHXfwTO5ppJIYYuUxFIrdoS5SVpqQFiRpJbCVU5RGBJi2SXu4nYyVIayHsaWNjijq7aJY/aCUTVALogsNy7FJmSkcCUFdw7HBtmOYyQAf+9J32dPawUThKuP2ddpb99ASNvj0pU/T39pfs/taPeCNimdmZrj//vtRSlUcGfStb32LiYkJ2tvbyeVyvhokysGP2c34+Djve9/7mJ2dRQjBhz/8YT7ykY9s6ng7mnQ3wka6q+tpOzg4iGVZvPGNb/TlTFbrlF+36sHVhst1xbnblpVLNJ2+1r512/74vh/nysIVRuIjmKZJOGzy70+8izeceAOhcIRXx+d4+qVBrg5NYOlBUlmT+3ruYSm7jK0sYoEYTUYTSiokkoydIxoudkC1hVrpbOpAIXCkZDExTyqXBiWxhIOQxesaNoK0hNrJO1k6Qp30xIqJtMXsApayiBpRWkNtpJIJpCwaxYT04Ip2WyAYCKGExNB1TGkRJFi8ZtKhPdxOIpfAtEwMEUBhoyh+Lu9IcmaGaCiKrQSxQDOGZpC1c4T1MHk7T2uolaSVwrEl0UALmlb0uQgIAz0QwFEWedssyheaRkAUo972cBsZM82eaDez6RlAYOgGxzqPMJIYJmvlimVmSnGo7SCOIwkEgvQ09yDQ0YXOZHoKpMChWObXHGhBqWI3XUAZ5O08kUAThrSwHatYGqcZxMLNWFgEjSC6bRAxiuWFQS2C41i0aM3kZA6JLBKrtIvRO4KwEcK0LZyiGEHIiBDUQkjpkLfzCBRC0xBohPQQ2bzF0HQcqfqZmZIsR8EKtPBPzZe5q+MemkL+rVGhfj7H3ikW1brtEokEr776KoODg7z1rW/FsiyeeuopX8GQF37MbgzD4M/+7M+47777SKVSnD59mgceeKBmsxt4DZNuNQlAKcX8/DyDg4O0trZy3333cfnyZd/+u36NzKWUxONxFhYWOHDgQNmkX7lz9gNN0+gId/Ab9/wG33zhm1jC4id/7Cfp7/qRQciJA3vYv6uJ0f4WTp48yWIyw5XhGV4ZmWZi4f9n772jJKvr9OHnpsrV1Tmn6dzTE7t7Zgi7Ouvq73h8dz0IBlBXJBhYXWFRFhEDqAsY1lVZjuKisuKru0cw8CIvrKgDvsD0JCYw07k6p+ruSrfije8fNd/LreoKt6prhpmB5xyOTk/NrW9X3fv5fr6fz/M8nyBWg2GIogSKorAYWEBcDaOULUNMFBLmPKAQiYSxEFjAuuSFDAkm1gRRkqDSakLowJjBMjTqbY1odbUgFA9h1DsCRVFh5awIRINwmG0os5YhGA+BVl4TRagKAJkCw7Fn1bwsFFoBQCeUZ5SC2pIarEQ8iaxUVGFlrRBlAaqkQlJlhOM8ZKjwx/yJOi/FoN7RgFK6FMF4EA6ooDkGLosDikIhKkfAxwI4WyyGhbNAVRXYWBtkVU0c2+U44tEYKDDoq+4DVAoW1gKOYdHLboUnsgI+EkKlsxIVtgr4Y34s+hYgKjKsjA3NzgaEhTBWImugQQOKCrdvKlFzpWVIsoJSUylUqHCZXIk+HhRIigKXyYm1yGqCk0ypUBUVdpMdVsaKqByHw+ZAuaMcw94RmCkLoMQgUzIcbMJ7WKETtpUO1gmVUlBlr8B6mMZKdAk42yNtLmmFiWahqgrMjAV8LAQGgBhnEQ2V4MQJCbdNPInqMgdaq8sx2N2IvpYarMU8mAnMwG6yo6+ybwMzolj2kEaYCxzH4W/+5m/w4osv4oMf/CCuuuqqgjnCvb29OV9TV1eHuro6AIDT6URvby8WFhbeeEE3l+mNKIpJX56qqlhfX8fk5CTsdnvSJIV8dulclDT9LDKr1Yr6+nps2bIl53UZhjFskK6qqmZS/nfb/w6VlZVpX6cfr1NRYsf+ne3Yv7MdACDJCkbnPDg04cZvj09AFi0ggSgU47GytoIYFYMfgYSMFwoocOBoBhbOAgUqWJqGy1yK5pIWrIXXsBpdR0jgwdIcaIqGjbNhPeJPsAFUEbKaoKWZGDNAqbCZrFAoFQzNwswyUBUgJsfgMNlRYapAua0METEGE22Cl1pHTIgkzGZoOcG0UF6TA8eFKCSKwWJwCVucLag0VWI2PIOYEoUSleAwlcDFOSGLMiJS6KxCjYHLXIYWVwv88QBEOQqOsYKigKgYAS/wqLPXAmcl1SzDosHZgBB4WDgr4mIMs/wMYkIcMmTwsQAEJQpFVVHnqEFUjCIQD8IX94KlOUClwDIMVqMrgEojgghAUYgrcbi4UihQ0VhSjwV+GSbaBImSQINBTBFgZjiUWsvAqAwGavsRFiOIxWOY5qfhMDsS1DyBQkjiIckKKk3lYAQGETGMCnNVgpUBGrwY1FjJba5WnJZPIxaPgZFkuCwuVNorIasqVnxhePxhHBydhSeyiOHQUcDqRUlFDB8cfCf+ee8/a4FXVmQ8P/M8DnkOITIXwZWNVxqmq6Ui31E9pJF2Ls1u9JiensYrr7yCffv2FfTvL+qgmw2pgdHn82F8fBwWiwXbtm3LOTomGzJlpKqqYm1tLWkWGc/zWF9fN3zdXHPKSF2YTCXesWNH1s0n2+wzlqHR11qLlnoHVmwvILIswFVqx6lhDzxBEa0lVTi9OA1OZAGWgyBIUCGd7dRTKLeUgmM4NLqaACgIxkOwsmZERRYMGPiiXgTjAcTkOCqsZbCyVkSlCDjaAoZi0FnZC5ZhIcki7KWtkFUKsiLCylnB0QkGgaqoaClpxnxoASzFQoYMjubO8ohVKMQM6GxtmWUZiFQMc5E5yKoKJ2tHTIwjJIcgSILG07WbnAmzIiREFTRNgaUZxCX67HcJJNgSrwk7cFY6ISoCFqPLEGMyGFpFKBZO8JfPrnkt4kWpxQWKAkJCCCzNQFBojfbGMmeZHqoFZdZy+MQ1lHFlsDAWeCIrKDG7UGWtBCgVJtoMQY2DpTjUOmpgojkoqgqOMqGUZrEmSKBVFrzAw0JbAIpBvbMOjfbmhPcGpYCJ04mMW5YgKyoEWUAgGISJM4FhWOyo2IGJtQlEEE2wRwJzaHA0JnjRFIWIGMHp1VHQKAEdL0XAK+GRGTeWzzyBv+reij3dTfjdzP+N59zPIRQO4eChgxheG8bNO2/Gy4svY8w7hhp7Df6m+W9g5XLXXfPJWI020opldhMKhXDNNdfgu9/9bsFz2S7qoGsk0w0EAhgfHwfDMOjt7YXTuXEETL5Il+l6vV6Mj4/DZrMlZdDRaDTvMTzpoCgKZmdnNXu52tpalJeX52wmGhk46TA5sKNsB341/ivw4NG61YWPtL4dW6u24henfonxxShGZ9ZhDrBYC8iQ4hwcZhvsJhvqHLWwMCbERAEUDVhYM1iGRTjOQ4ECWVHg4BwIxkNwmhwwURwcphIwDAu7yQYbm+CcSoqEtcga4nIcgTiPakclbLQNoCiU2UpRZkvUWY8uvpJQkKkCVCrBckhoJRJOZpIsQFEAkRFBg4bVZEVdSR3CQgiCLMDKWhEREhaSjJKoiYp0HJFYBC7OhYAQTMi0VRUKVJRbykGBgoJE44yigIXgIqJSHC6rAxE5hpgYgc3sTJwGVBksTUNSZATjQYiKBIqiwaiJphpUQFEkUEiYDZlZDlbZCiuXSAJoNRH0qmxVYGgKvrgfTY5GlFpLQJ2VZPMCj/WYF4GYDzFRgI21IKoACiRU2SsQFaKY8I9DVhWUWcoB0PCLvrNG/DRqHdUocZRAFEVIkgQ+HgQvhmBlrWBBYz28Dho0GkuaQKlIqPtUFSzLQFET3GFRkDC2uIbTc3/Ev/2/IazFF0Fb7ZAtUVgrV/CL2C/AUAz+PPdn2Fk7olIUr6y8gn/Z9y85Z+Dlk+kanQS8WbMbIFFHvuaaa/ChD30IV199dcHXuaiDbjbIsozR0VGYTCZ0dXUZ2pXyETwQ60gyi4ymafT19W0YOJhv0y016JJpwVNTU0k0ttHRUUPBPFfQjUajGB8fR2WsEu+seyfat7WjzFqGttI2yKqMupJaUDRQWipjOjiN/6u8B1sj/aio7cXovAdzHj/WgmGYFBOsjAURMQaXyYmIGIKFtoGhKJhZKwQlBkVVIcuJhzahdD0rwVUBb3QdcTkOE51gCHhCq6h11CSkvSoFVQWsrB1ltjL4IusJ7wjapPGOBTmeEDGoCf8HGixkVUJcisHK2mBjS1BmoSGdnUUXRRQ0w4JWZagqYKHMYBUGFVQ5gvEgaIZBo60aJiROHxSTUMuJkoSYEoWF5aBQKuwmC1iWgyjHIStMgg7F2cExHPh4CKoiQqWBEms5gjEvJEoBo6hwmixgVRNsrAX+uErK3IhJMTA0DRPLglIpmGjAK6yj1FYKPh7CdHA6UfOVExpBE2OGIAuostUgLkchKiKiUgyCIoChgXl+Hiaag5WxJBzUQMHMWcCwDJizvO0wFQITYWAxW6FCAQfAH/bDqTpBU1TihEAxEGUJDMVBkhO2nuuRdcRlEQwNhGMi2KgVLNuF2BqFABPAj2aHsL11CyprKdC0inHvONx+N7orurPes+ci6G4WqqripptuQm9vL26//fZNXeuSC7qhUAgTExMIBoOoq6sz7IRPmmNGvmyWZREIBHD8+HFtFlkmgnahM9VSSxV79uxJavRtZmQ6kNi1JycntckFlZWVkF6WMFA3oG08LMXiqq6rcGTpCLxRL65xXoNdtbtweOgw9u1sw9t2JyYeSLKC4ZkVHJuYwf838SoW1wKIKxUo4RwQFBmBmB8sxUFQ4qAZBrIiwck54DDZtNFGUTkGE2NOjBNSGQACFChQ5IQsmWIoqArQU9YNtzqFddELK2uGy+QCL/Dwxf1QVAmyksh+gYS5u6zIiEsROEwO1DnrERdjCMfD4BgOcSUKjmLRWtaMSnslFFmF0+mEqjZAliVIoohINJb4TohDGpdojMmyCtNZi4RyazkURdHMeUwMBwosykpKIUPBamQNUBU0u9oSjnKqDAtjhl21wWaywxILIixGEsw9RYGNs4L4JwNKgqqmKlgKLSIcD4OiAJaxQJYjkFUJgspAUSVApRARo4jLAswsd1b0ISIux9HobD5rGgSEYxHQLhUyEh+VieGgqkpiA2MoUHSieVfmKgVFUbCJNgQkPzxRDwQ5CpoC6i3NCMfDsJksoBkGLCiIUEGrElSFBqs6EfZyGA1bMHZGhc2uQjaXY6LJh84yNe0kDYJ8gm4oFNr0ZGUjZjcvvvgiHnvsMWzfvh27du0CANx3331417velePqG3FRB119VhqJRDA5OYlIJIKOjo68jvXAa8bnub7saDSKubk58DyPnTt3Jk0zTYdCgq7f78f4+DjMZnPGsemFBl29tDmVK0ysMvWfq5Wz4q+b/zrtNUmnmmVobNtSi466Uly3vx8AMLI8g18dfxaiJCEkyag0t6HKVgXfuh8VJZXoruvUeKxQKbwwG4EsS7BxdkiKDJ+gYk9tD0pNLoBK0NYoikI0HsPiQhnsVTYcXDgEUAoW+BA62XKMekcRFsKIClEwnAmNzibUO1wYrB9AtaVWs20cny9BCGE4rSVocDYkHNwkJeEPobMLTbiPAYAKQZQhiRIEIY46v4oTnpOgKRoUTWNndSuaSpog0CIsJguWeQ9Wox44TGaoACrjFXCaXNhWtRWyokBRAYamsLC0jIrycmyla7AS9kCUBNg5O06vjUFSggBocCrQX78NHGXCvCDBxEUgxMKgKQaUFIaqUKAYKzibA2UmJwAzJn0emFhHoibMxCEpMhxOJTHmSBLgZM2oKEnYfdIUhXLZBm9kAQITgqRSsFlN6Ktqh5m2gGFoyIoF5a7dCAh+xEURDpMTFFQcWzoBhlYSjVGOhSSFQdMMzAwHM2dGidkFPs6DYzj4eAnmaCn+nwML+OPBp9BY6UJvUzUGuxpRVZocNI3WdPPx0s2G97znPXjPe96z4ef19fV4+umnAQB/9Vd/VTRK3EUddIGElHZychI8z6O9vR2VlZWgKEqbsWQUuRgJgiBgcnISfr8ftbW1sFgsOQMukF/QJZN2JUlCT09P1vqz0esmnL7UpDJFXV1dWvpaajDNhFQfY1VVE5meqmpll/aKety2/zrwIg8rZ0WZJXEEnJycRGlp6Yb5db3tTjztfhqSHIasythfNYB99YMbyj3RaBQTTgrbt2/HNeIA+DiP2eAsji4fxc64HX+a+ROWw2uoc9Thb1s7cVXXVegoS55BNjlpT7uGfPCnQ39CRWMF7JwdLrg0JVU0GsWaCDznPYkKewWsFivCShTXbb0KHeXJ6zhx4gR6eno28Er9MT9Oek5ClEVsrdqKOkcdFFXB9w6P4KWFk1iNrMIb9cIkx6HKKnort+Gq3rfi3Z3vhqzKuOWZWzDPvwobZ0Ofswlm1gwLuwyGYmBmzfjH/o+i0dmovZ8syzj6ShXK28shKRKaSppg57I3mlVVxX8eD+DoylHYWBt8sRC8vBd2xg6O5fD26rej29yNv6z+BfPCPOpL6nFN9zVoqGgw5MlLBm4awfnw0i0mLvqgOzExgaqqKmzdunWD5jvXRGA9MgVdwhbweDzYsmULenp6EA6HEQwG01xlI4wER+LBwPM8LBYLBgYGcl7XaKZLfoeDBw+mLVMUck0SdEmwJf+G47ikAGylrLAwCWs+URQ3/Bt9cK+0VeJ93e/TJK4V1twB0c7ZYefsqLZXg6EYnFo7hQ/1fQg7qndge/X2jJSlYowsL+PKsLVqq6Zc1FsiiqKIuoU6vDj3IiKhCHpNvfBN+nBm+Yw2Tt3hcGTc4EotpXhL81uSfkZTND7U9yHEpBheWngJiqqgydmEv638W/x9198nvf9/vus/8eTYk1iNrqKttA3/p/X/YDW6ipgUQ52jDiXm5P6GLMswsaYNm1M2UBSFG3bcgO6FbiyGFtFS0oI6pQ5ROYrWxlbYuETQ3Kvu1XwWQqEQRkdHk3wWyOdht9u1z8JoeUEvoriYcNEH3R07dqQNFIXYO+pfn8lhDMgve812U4iiCLfbjfX1dbS3t6O7uxvHjh0zdF19My8TeJ7H6OgoBEHA4OBgzuyBZMW5QNM0JEnSXp+YCPHa76nPoMl3I0kSFhYWsL6+jqqqKsiyrH2G5N+bGTPqHHU533/DeigaA3UDGKjLvVkVC9kCN8dx2N26G7tbd2s/UxQF4XAYPM9jdXUVU1NTCAaDOHPmDEpKSrQAlC0LrLZX487L70RYSJwGHCYHpt3TG04sLrML/7D9H5J+1mLKPFW3UFEDx3B4a/NbtT9PT0+j0l6pBVwg8d3abDbYbDZUV1drP9f7LMzNzWkufzabDdFoFBaLBQ6HI6tgief5orCRzjcu+qCbCYXYOxJnI2J6k85hjLw2n2unQh/Q9ZOJVVXNi16WKSsljIR4PI6uri6cPn3a0HEtYZqSOdMlAZllWQwPD8PlcqGkpEQbbpjpmmtra5icnERVVRX27t2bGJp5NhvW/y+ADYGYoqhN1+zOBfLNlmmahtPpTAoShw8fRkdHhxaMFxcXEY/HtTllJBDbbDbtM6ApGk7za9coxkDJYk4C3qwnbyQSwfDwMILBIFZXVyGKIsxmc5Lhjc1mA0VR8Pv9F53ZDXAJBN1MN75+IrARMAyDtbU1uN1uLThkMr3J1zqSQFEULC4uYmZmJm1Az+chTpdt6zPnzs5Orb5tFNkCub4s0Nvbq5mQrK2tYWpqCqIowmq1wul0aoFYEARMTEzAZDJh165dSVMA9KcGAn0A1pct9IGYvGYzKEZ5oRjXABKZnd1uT8oCBUHQssCZmRlEIhHNg0BfniCJwmY3pWLJdzcbvGma1rLb9vZ2mM1mqKoKQRDA8zxCoRBWV1cRiUTw7LPP4tVXX0UwGMRLL72E7du3F5T1GjG70f9+g4ODaGhowFNPPVXw73nRB91MMJqNEh+GmZkZmM1mDAwM5DTMyPcGJbJgt9uNioqKnC5mRqAPkHrhREtLC7q6ugoKCOnKC6l1W5J5kqyN6NFVVUUsFkMwGMT6+jqGh4chSZIWKPx+v5a1ZVpbrkAcj8cxPT0Ns9kMQRC069A0nfT/zweKFXTTXcNkMqG8vDypUSvLspYRE5MmWZYhiqImHycnjnzX9Xpkutmgr+lSFAWz2Qyz2Zwkde/p6cEvf/lLPP3003jsscdw8uRJ/PCHP8T27dvzei8jZjcE3/ve99Db22u4n5MJl2zQNVKfJCoyu92OtrY2RKPRvB2KcsHr9SISiWB1dRX9/f05Zz4ZBcl0FxcXNeFELkOdXNCXF9IF22wPM0VRMJlMiEQi8Pv96OnpQVVVFQRBQDAY1IJFJBIBy7JaNux0OpOaKKkgm8vCwgKWl5exZcsWLYOXZTmpOQdA+xlN068dyS/A8gSQn98HwzAoKSlJEvmoqooTJ07AYrEgEAhgfn4egiDAZDIlNamybXTAhRd0jWTvJSUlqK+vx5VXXomvfe1rBb+XEbMbIDFu/fe//z3uvvtufOc73yn4/YBLIOgWkm0Eg0GMjY2BZVlNReb1esHzfNHWxfM8xsbGtKywu7vbsIuZ0esvLy+DoqisjATgtWCa60YmMmR9MMsVbIHXMvnp6WnU19dj79692nuZzWZUVVVt6O7zPI9gMIjp6WmEw2HtaEmCscPhAE3TWF1dhdvtRk1NDfbs2ZP0UOt/H33WT7Jj8nvoecjkszhXWer5BDl11NTUJCUL8XgcoVBIa9pFIhHtPtTXRslneaGUF/Qw8tnqzW7ONW677TZ885vfLEqMuOiDbj4garV0KjKjdo16pDtikiZWLBZDV1cXSktLcezYsbyune3oSoK5oigoLS01tFMb4d+S9wyFQrDZbGAYxtCDSIQcTqcTAwMDhjYWjuPSHp95ngfP85ifn0cgEEAsFoPJZEJdXR1cLlfWplGmrDa1YRcOhxEIBFBdXQ1RFF/Xhl0xgna6rJAcx/U8ZEmStPLE0tISQqEQVFWFzWaDqqpgWVbLkjezlvPl9AUk7j0j04s3a3bz1FNPobq6GgMDAzhw4EAhS03CRR90czlsybKsCRvC4TA6OzvTihrybbyRa5Pak148QWS1ZG35+uSmC7qxWEyzcuzq6oLJZMLo6Kjha+ZiJSiKgurqao25QVGUdvwnlCb9AxWJRDA+Pg5VVbF169ZNubYBic+otLQUNpsNPM/DZDJh69atYBgGwWAQHo8Hk5OTSXVisrZsgYIEJFVVMTMzA6/Xq22G2Rp2FzJzQg+jWSrLsnC5XEmJBmELzM3NIRqN4vTp00lsAZIZW61WQxtEMYJuPrXyYDCIjo7c3OLNmt28+OKLePLJJ/H0009rfYsPf/jD+PnPf17Q9S76oJsNDMNgeHhYU6uRWWTpUAivlzykZDw7EU+kvkchUmDyIJGpE2tra+jo6NB+h1gsZlgckSnoptZtS0tLNQqPLMsIhUIIBoNYWFgAz/NaZiQIAgRBQGdnp6FMwwhIM5B8jr29vdrnqO9Kk/EtwWAQXq8XMzMzZ6dmWJLqxBaLRRNxkNJHY2Mj9uzZk7QZ6t8/G4WNfI6vd0khFZsplZCSjsPhQGlpKerq6qCqalJ5YmVlBdFoFAzDaEE4Wx1+s59PPmyM82V2c//99+P+++8HABw4cADf/va3Cw64wCUadEVRxPT0NAKBACorK9HX15fzZsg36DIMg9nZWaysrKCxsTFJPJHutfkGXXL9hYUFNDc3bxjxY8R7lyA16BppkjEMk5QZKYqC+fl5zM7OoqysDHa7HVNTU5ohvJ4qlg8zg7BHMtVtU6Ef35LKnCDliYWFBcRiMdA0jXg8Drvdjq1bt6KkpCRv5gSADQ27eDwOSZIgCMKmGnbF0vJvNhuXZVmrCVMUBYvFAovFksQWkCRJo23Nz88jFAoBAOw6Y0JjAAAgAElEQVR2uxaIi/H7GDWdAoozlNKI2U2xcdEHXf1DpBcdNDc3o7a2FmVlZYZ2X6NqLJI5eb1ecByHyy67LOdNkk9AJ74RCwsLWScSZ/PeTffa1EwunyaZXtyQ+vuSIyohs5MSgM1m04JwphIAqU9bLBbs3r27YOYIRVGwWq2wWq2orq7W+MHhcBhtbW0QRVHju5KMjawrF3NC/7+KomB6ehoejwddXV2ayIN8DxdjeQIwVqJgWTatmCEcDmv82Wg0ikOHDmlqMpIZk1OHEZxvW0cjZjd67N+/H/v379/Ue170QRd4LQubm5tLEh1Eo9G86rS5QKwWS0pKUFNTg/r6+oLHsKeD1+uFz+cDRVEYHBzMGoTy8V5IZSUYDQY8z2N8fDytuEF/bXJEJSAlAJ7n4fP5NpQArFYr1tfXEYvF0N3dXbADfyoURcHc3ByWlpY2lCgICHOC53nMzMwgFAqBoqgk5oTT6dyQbZPvvra2NomdoX/vTOUJQmHTB+Ji8XyLgUJrsXq+dm1tLQKBAAYHBxGLxbTyxNLSEmKxGFiWTSpP6FV2ehQ6qudiwkUfdFVVxdDQECorKzeIDjYr1yUIBAIYGxuDyWTCjh07YLPZMDY2VpBPbjoQIxCaplFRUYHm5uacWZ/RB5Z0picnJ1FWVqYFlmwPWTwex8TEhNa0yzco6ksAtbW12joikQimpqYwNzcHi8UCVVUxMTGRVJow2rRJxfr6umZ+lK1EkYk5QYLE4uIiQqEQFEWB3W6HxWKBz+fTbDYz8azzVdiR+1KW5dc9Iy4GZYxcQ3/qSEcTTKey02fFkiQZ3gB4nn8z6L4eoGka+/btS3vTFBJ09RlIOBzG+Pg4JEnakJHlc+1MQZe4i4XDYXR1daGsrAyjo6OGM9hcvwd50Nva2rSgsrCwoNXjUrM7INEU9Hg8aGtry9p4zHctpERRXV2Nv/7rv9YerHg8roknlpaWEI1GwXFcUmkiG7k/EolofOidO3cWJD5JrV8DiSAxMTGB5eVllJSUQBAEvPLKK7DZbEnliVynEXJ9AlmWtRp2U1OT9j3pzesZhjmvCrtisA5y1WIzbXakPEFUdvF4HAzDJLmQZVLZFcN34vXARR90gcRNna4ey3EcotGo4esQRoIsy5rVYmdnZ1rf1XyCLuFAEhC7yNXVVbS3tyc1+vJpuqVDuiYZy7IoLS1NajooiqIdsxcXF+H1ehGPx+FwOFBXVweO4/JqamRCKBTSTgnpMsV04gmitSd1Yn0tlgRjs9mMmZkZ+Hw+dHZ2Fq2LTRp7k5OTaGhoQHd3dxLtLBqNIhgMwu/3Y25uDvF4HGazOWmTyFTDjEQiGB0dBcdxSXLzTA07/c/OpcKuGJluPhkqQTqV3cLCAuLxOGw2GwKBgPZnjuO0bJhQ2i5WXBJBN9VUmyDfTJemaYyPj8Pn86GtrW2DR68eRqwV9a+VJEmrOc7NzaVlJJDXFhJ0822S0TStCQ4WFxdRVVWF1tZWTba7vLyM8fFx7ZitDypGAjHhLYdCIXR1deV1DDSZTKioqEja7PQqNkIDNJvNKC8vT1K0bSbzCYfDGB0d1Tw4Upt/eptCfdkkHo9ra9Nn6/pmncfjwfr6unai0SObsENfokht2JH332zQLFamWywJMLGBTDUBIuWJAwcO4Fvf+hZ8Ph9uueUW7Nq1C+985zvR2tqa13sZNbvx+/24+eab8eqrr4KiKPzkJz/B5ZdfXvDveEkE3Uwwau9IOKJ+vx8ulyttMEwFy7KGs2iaphEMBnHw4EFUV1dnZTzkw0ogSJW8GnkA9eKGvr4+TdxgNpvhdDrR0NAAINkHlggUyINBshQ9TYxsLIuLixl5y4WA4xLjzVdXV1FSUoLdu3eDpukkFZu+bKLPinMFA/1Y++7u7rw2CD3FKl22vry8jJGRETAMA4vFguXlZYTDYU1wku270me3BCQIk9JUSUlJUpM0tWFnBBdS0JUkKe14Kv1G3NLSgne961143/veh49+9KM4fvw4PB5P3kHXqNnNrbfeine+8514/PHHIQgCIpFIXu+Tiks66OZSmamqisXFRUxPT6O2tha1tbWorKw0dLMazUh9Ph9GRkagKAr27t2bs0GWb6YrSZKW5RuhgBGxBVHO5Ro5pO9Q19fXA4AmpyXafrfbrbldRaNRVFRUYPfu3UUz9xEEQZNW9/b2Jh0t05VNiKhjaWlJk0zrs3WySeiFE01NTejo6Cgao0CWZczPz4OiKFx++eWwWCwa15XneczNzW3YJMh/2U4SFEVhYWEB8/PzaG9vR3V1dV7CjnT3djHKC8XMdI2cpAhd7LLLLsNll11W0HsZkdAHAgG88MILePTRRwEkgv9mPVQuiaCbr8pMX7crKyvTDGPGxsbyqtNmey2pZVIUhc7OTiwtLRnioRopW5AHq6ysDAcPHtSoWOS/dO9DaHXE/rGzs7PgAEMoVqT+S9gXDMOgtrYWsVgMr776KkRR1BpPZG353LB6CpjRxh5N0xvqhOm4xIIgaB7AbW1thvncRtY8MzODlZWVDf2ATFxXsknoSzp6njNpJvE8j5GREZSWlmLv3r1akMvFnNDXidM17C6koGuUMhYIBM4Lc2FqagpVVVW44YYbcOLECQwMDOB73/vepmTvl0TQzYR0c9J8Ph/Gx8dhtVo3TNrNx/Qmk5E5oVuRWmZZWRmi0Sjm5+cNXzfTGlKbZJ2dnejs7NT04Prmjl4WK0kSZmdnNXP2YnV8BUGA2+0Gz/Np67b6xpOer5tqdp4uIya82Orq6pwqtVzQc4nJ6Hmi21dVNckWMXVtuYYo6uH1ejE2Noaampq0XN5Ma8u0SfA8rxnrk3E2NTU1KC0thSiKWWXJ2RR2+lqxz+fTfHkBJGXD+QTiQhppma5jJOganRqxWbMbSZJw7NgxPPjgg9i3bx9uvfVWPPDAA5uyk7wkgm62G4/caCTzBBLHinQu8/kyEvTBUc9ISG3C5RPM09V0czXJCC+ypqZGe30sFoPH48Ho6KiW1RArxWzBzgj0WXNryhh3PTI1nsgmEQgEkjYJEuQ8Hg84jsvKi80XpJQ0OzuLlpaWpDXnWlsudkIsFsPY2BhUVcXOnTvT1iTzAdkk7HY7GIaB1+tFR0cHysrKEAqFNqxNT2HLxnPWB1NCiYvFYti9ezdYltXur0IUdsVgugDGg7dRCfBmzW4aGxvR2NiIffv2AQDe+9734oEHHtjUNS+JoJsJ5Oh06tQpRCKRtJ1jPViWNTy2nQRovRquqakpIyOhUE5vIU0ykoHGYjHs3LkTJSUlSf4EqcFOH1ByZXbkeF5o1qwnz+s3iXA4jMnJSSwuLsJisUAQBJw5cyapNJGPnFQPIm4pKSnB4OBgRm+ITGtLx04gRuGkYVZM8x8gYRE6MjICk8mUxKSw2+3a2oBknrMRk3hVVbGysoKpqSm0traitrY2Iwc2H4Wd3r9hM8inpns+5qPV1taiqakJo6Oj6O7uxh//+Eds3bp1U9e8ZIOuIAiYmprSgq2ReiDLstoxLhdomkYsFsPBgwdRVVWV0SOBvNaoGQgJuvlObgASN2wmcUOqPwGQbBQTDAYxPz+flHXqa8ThcDgr37ZQqKqKpaUlzMzMoKmpCTt27NDWTAJKarDTbxLZMjviwRCNRjc04IwiEzvB4/FgfHwcFosFdrsdk5OTSacIIurIt1ZKasIejyejDake+ZjEW61W8DwPm82Ws9FppE5M7k1JkhCJRGC1WjetsDNaXz6fZjcPPvggPvShD0EQBLS1teGnP/3ppt73kgi6qaY3MzMzWFpaQmtrKxwOh+EBjUbLCz6fD2NjYxBFEXv37i1aAAJeC+aE62nUlIYEroaGBsP1xEyBWB/s5ubmNFvH6upq7eEuhndArgw0k3CCrI1kdqkKNqvVqnX4t2zZgpqamqKxEgRB0L773bt3J01Z1vs6TE1NacEu1Zc403dD7itSxy40cKWqv4hRz9LSEiorKyFJEk6cOAFVVTfQ67JlmekCMRF8kCbh+VLYBYPBvCliqTBqdrNr1y4cOXJkU++lxyURdAFoc7RSR6cvLi5CkiRDXfNctVeS7RFu68mTJ4ua8SmKAo7jYLfbcfLkyax8WALSGHS5XFmPzkZBMjuTyYRYLAZBELSyTGpGTGqd+ozYSHAjzcZ4PJ53BmoymVBZWZlkO6hXsC0sLCAQCIDjOFRVVWk8Y7vdvqnAq6oq5ufnNapWupNTOqmrJEkaOyGVJqZv1rndbgiCgB07dmy6JqxHIBDA6OgoKioqNtiPks+GbGATExPaPZfLJF5VVW1jS2VppGvYFdso/nyVF84FLomgG4/HcfDgwaymN0aDbjZGAunS5zry5YPUJhnDMOju7tb+jjwUemECMWLx+/3anLfNTm7QgzAHUuu22TJi4mGbLRDrjcqL6e1A6qtLS0tgGAaXXXaZRrEKBoNwu91ppcTZbB31IIGrrKws7zp2Ogm23iB+YmICgUAAZrMZLpcLHo8niUtcKCRJ0lg0me4PfRZOYMQknhgolZSUpGWWGB2dlI5PbJTCFgwG3wy6ryeyjU5PRxvLhFQxhSRJmn9qJllwPsfs1NfmapLp+bBEmCAIAkZHR7GysgKn0wlBEHDq1Km8jomZQDJ5lmVz1m31tU4jgZhlWQQCAdTU1GBwcLAonW4gmcvb3t6eVEpKl3WSQExsHbMd//U14WJubAzDgGEY7TvctWsXaJrOqPzTf69Gkgfy75ubmzMySzIhm0l8MBjE7OwseJ4Hx3EIhUJa8CV2jbmk5+T3J9Ar7MiJjSjsyHrSZcTna2rEucAlEXRpms7YOc2XBkYYCaRU0djYmFEWTChpRjIf0iAj1Jx8m2Sp4oZt27YlZZAkI9YT7MkRNpccVhRFuN1uBINBdHZ2FpxBpAvEoVAIIyMjiMfjqK6uRjgcxuHDh5MyYv14nXzg9XoxPj6e086RIJ04QX/8n52d1fx1aZpGNBpFY2OjZlheDMiyDLfbDb/fv8G5Lp3yj2Sd6+vrmJqa0gQdqYwTIEFdIxahRoeEGgFFURAEAdPT06iurkZ/fz9omtbq62SjyNcknlzb4/FgamoqL4XdysrKRZvpUjm66sWZJ3IekInqNTk5CYfDkUSzyQRVVfHCCy+A4zhUVlaira0t68N25MgRbN++3RBV5siRI9i2bRs4jssr2OrH2VRXV6OlpcVQkCeBOBAIaM0dRVE2HK+Xl5cxPz+flT5UCPR+BmQQpB4kcyKZp740kcutS8+L7erqKmoNNBgMYmRkRAtsoVAooxVmvnQ5vXtZY2NjQZ81EZyQz43necTjcaiqClEU0djYiPr6+oLpdanQO+719vbmzPb1zURiUENRrw051X928Xgcw8PD4DgOXV1dWcsp5JmJxWL4zne+g5/97Gc4c+ZM0QzwzwEyfviXRKYLZHcaM1Je8Pv9mgx43759hhpkRn0SCK9xZWUFFRUVhh+IYDCo0ZLypWmlq9fpJadutxs+n09r/kiShGAwuGmnrlQKWCY/g9SMGEASfW1xcXFDIHY4HFhZWYHH49EmLhcLRKkWCoWwdevWDc29TEbn+tOEw+FIu0nrM9DNjCUCkgUnNTU14Hkew8PDcDqdKCsrQzgcxsjIiDa+Xr9J5Dr+p2J9fR3j4+Natm/k3xo1iSdz5mpqajRxSjbQNI3jx4/j1ltvxbvf/W5MTU1tumn8euGSyXQFQUgbdBcXFyEIQkZ6CaljKoqCrq4unDp1CldccYWh9zx16hRaWloy7rZ6zTtphpHMhGRS6TwJYrEYJicnEYvF0NXVlVY9Vyj0dduOjg6YTCYtEAeDQS2r0/N0c7lhEegpYG1tbUV5KEiNeHl5Gaurq2AYJinQbUY0ASRvEi0tLairqzN8LbKJ6bNOvbmOw+FAIBDQOLfpfJkLhb5M0dPTk/YeIaIOsr5U4UQmLrEoihgdHYUkSejp6SkqJTIajWJ4eBgWiwX19fWa3DkYDGqz9fQZscViQTwexze/+U0cOHAADz/8MHbs2FG09ZxDZLyJLpmgK4pi2okLHo8HgUAAnZ2dST+Px+OaBl//QLz00ku4/PLLDT14w8PDqKmpSctmSG2SpTbQYrEYAoGAFuxIrU6WZUSjUbS3txf1uE/qtoFAIO1xXw99d50EYtLUSxeI9RSwrq6uohpMR6NRzUyns7NTewjJ2khpgmR1+QRiUm92OBxob28vyiZByjorKyuYn58HTdMaDTAb9S8fEHZJIWUKvXCC5/kNXGJRFLWmZHV1ddHuP0K5W1hYyMgA0nt18DyPoaEh3H///Rpt8ZOf/CT2799vqFR4AeCNG3S9Xi9WVlY0GzdZljE9Pa3RllID26FDh9Df32+ocTI2NoaysrIk8n4hTTK9xaTL5QLLsuB5XqOH6R/WfBs6pCk4Pz+fdyanhyzL2sOqD8QURSEej6O5uRmNjY1FM9Mh39Pa2pohZVY+gViSJG0DKuZgTCBxHxIbyu7ubtjt9iTqnz6rSx1dn6vxRZgriqKgu7u7aBmoJElYX1/H5OQkFEUBy7JJdViyyRb63UYiEQwPD8PhcKCjo8PQdeLxOB544AH85S9/wb333otYLIZjx47hyiuvxNvf/vaC1nGecekHXUmS0tZXiTpo27ZtWFxc1FRbzc3NaY/Mx44dw9atWw3d0G63G1arFXV1dQUFWyCxKUxMTMDlcm04kusfVvJfPqwEMqyxoqICra2tRevAA4mmEFm3zWbTGk5616xCpLD6xmF9fT0aGxsLVjHpAzHP85rpPGFStLa2FjwIM926iTevERWcnplAAnEmK0y9WQ/JQIsFfQaqP/Hp67Bkk9Xfe0a8f1VVxezsLJaWltDT02OYbXD06FHcdttteN/73ofPfe5zRb1vzyPeuEE3EoloksfKykps2bIl69Hu5MmTaGtrM3REnpmZAU3TqK+vzzvYkqGXxG9XLyfNBn0zjDywQHINlqIoTE5OgqZpdHZ2FrW7T2rCHMeho6Njw+ak58IGg0GEw+EkUQKhEaX7jPTjcjo6OopioJJ6bcJMIcdYvZ8DCSb5BmLSvLLb7ZsqU6Qer0nGTkpPLS0tKCsrK9rnEg6HMTw8jJKSErS3t+fMQPXURFIr1qsmyXdMOLzDw8MoKyvDli1bDGW3sVgM999/P15++WU8/PDD6OvrK8rv+TrhjRl0A4EARkZGEA6HccUVVxjKXs+cOYP6+vqcuzKRQa6traGpqckwhUhfWy3WQEWSlfh8Pq3rb7FYtJHrRviSuUCO5H6/P2dNOBX6OiJp6OiHEtpsNqysrBR07VyQZRlTU1Pwer0ZR/HonbpSA3E2Yx0j1y4UiqJgamoKa2tr2LJlC1RV1daXyZQonwYgKd309PRsqryinyKi/34VRUFtbS2qqqo0qXM2HD58GLfffjs+8IEP4Pbbb79Ys1s9Lv2gK8uyJoIgY7llWUZnZydeffVVw4yEdHXaVJAmmSiKWF5e1nZ90pAoKSmBy+VKyuhSPWiL2SRLV7cl035Jsy6fjDP1dyXd/ebmZtTX1xdl3aIoatSwtbU1MAyzgdGRL8Updd2kTFFIw0lvrJMuEMuyjNnZWe3axZzQ6/P5MDo6itra2rRlsFTlH8/zhnnOJBEhnO9irpvQ1yoqKlBTU5OUFafaiDocDq0pet999+Hw4cN4+OGHDY3QuUjwxgi6kUgEk5OTWhapZyQYDbputzvJdFuPXHVb/dE6EAhoGR3HceB5HtXV1Whvby/qLp5P3TY14wyHw5pDF/lPn9GdCwoYARnxY7PZ0N7eDpPJpAVifcaUbX2ZoB913tnZWbTjuCAIWFtbw/T0tDbhgJiI57O+TBBFEWNjYxAEAT09PXmXhfQ8Z1LDJhuF3W6H1+vV5swV06tDURSN953JwEi/UfA8j5deegnf+MY3tPV87GMfw/79+w1xdi8SXPriiEAggOPHj296Am062bDRJlmqzDQYDGJ0dBSyLKO2tlaTwJpMJrhcroKOhgQkm6dp2rAzVTriut6hS2+CLYoiKIrS6D3Fpq4Fg8ENzAGO4zaMXk+3vkysBD3jIZdhfb4gjbLFxUV0dXVpwoxsVpNGA3G+TbhMSOf7G4/HMT8/j/HxcZjNZqiqqtVx9VzdQr9fkjnX1NRgYGAgY+asl4g7nU6MjIygqakJX//61xEKhXD06FFUVlZeSkE3Iy6ZTFeSJG1uVCry4d7qxRSFMhLIeGzCW00lrpMdnxz9ydFLH4gz0Yf003yLVRMmIC5gi4uLGkczVaJL1phv9rgZEUIq0h39CXWtoqICW7Zs2VQgSQWRBpeXlxtqCuk9CdJl7Hp1WCQSwcjICCwWCzo7O4t6miDev7IsJ1HM9BsZz/NJNXa9Z0K2z0+WZY3nnk/m/PLLL+OOO+7AP/zDP+Azn/lM0SiGFyAu/fKCqqoQBCHt3+XDvSViivb2ds1ww2iwJZnW6urqBserXGvXz+Yi9KFUju7Kygrm5uaKWlslIL4ANTU1G2p9qTVEslFkU9XpQTL+c1GmiEajmqKwpqZG6/7nspk0AiINDofD6O7u3pToI10gJn2IxsZG1NXVFW2j0GfObW1thsQEmZqd6awwSc05n1p5JBLBV7/6VZw8eRI/+tGP0NXVtenf8wLHGzvoHjt2DL29vYaO4MTNqb293bD8VZ/FNTY2oqGhYdMNilQvXa/XC4ZhUFZWhtLS0pwcXaPIRQHLtj6yUZDNgvBM9cfqmZkZRCKRTQetVGQbdU6gr3GSQJw6Ey7d76ufI7bZrDwdyJG8vLwcpaWlGgUw3RSMfAMxma1mNps3nTkTPw49V1cQBFAUhaamJlRUVOR8RlRV1bLbG264AZ/61Kcu5exWjzd20D158iS2bNmS1cOAlBIkScL8/HzSbq8/9qfW54i4obS0NCcHOF9EIhGMj48DALq6umA2m7NydAljwkjA3wwFLBP0hP/FxUX4/X6tfk0+w0K9fvXQjzrPpwOfKWMngZhwTN1u9zk57hNj8XA4jJ6enrRHcv3RXx+I9c26dIFYVVXMzc1pNediGu0DiWRkbGwMjY2NcDgcSYGYTC/WiyaIP/C9996LM2fO4Ec/+hE6OjqKuqYLHJd+0AUy2zsODw+jtrY2bf0zV92WdNTJsT8ajcJsNsNqtSIYDMJkMqG7u9uwuMEI9AGxo6Mj6wOUTp6rPxYSxRj5nfTqpnNRpiBubXpS/GZUdXqcC0tHvQ8GmQdHJlEYKZ0YBTEWLyRzzhWIWZbF1NQUysrK0NbWVtRMksiayWildCcDcg+SNf7617/GE088gUgkgiuuuAK33XYb+vv7iyJbvvHGG/HUU0+huroar7766oa/V1UVt956K55++mnYbDY8+uij6O/vBwD813/9F77+9a8DAL74xS/i+uuv3/R6suCNEXQzOY0RR3q9fLLQJlk8Hsf4+DgCgQBKSkogCAIEQYDNZkvKiAvJ5ojgYrN1W3IsTKWGmc1mBINBlJWVaQ5jxQIxvSHmJNkaK3qvX33GnhqISQarnw5RbEtH4LXMmfBiKYpKKp0Eg0HtO06V6OZCLBbDyMgIWJZFV1dX0T5zQRAQCAQwOzurbf6p9LXN1oiJ1DsfXnkoFMJXvvIVjI2N4R//8R+xtraGo0eP4mMf+xj27NlT8FoIXnjhBTgcDnzkIx9JG3SffvppPPjgg3j66acxNDSEW2+9FUNDQ/B6vRgcHMSRI0dAURQGBgZw9OjRczl94tKnjGUDx3EaDUxvt5hPk4w8+IuLi2htbUVfX19S9kiO1R6PBxMTE1o2pz9WZzsGkzJFWVkZ9uzZs6kjOMuySdQw4ucaiURQUVGBaDSKo0ePanO59I2mfEFEH4uLi4bnnqXz+tU7m83Pz2uGOmTWWUVFBQYGBs5Jd1+SJOzcuTMpcyZTkkkTSi/R1c8O09ewSXmCvJ7cL8W2dQQSpSe3242amhrs3r0bNE0n8ZxXV1cRDoc1K8d8AjEx1lFVFf39/YbuC1VV8Ze//AWf//zn8fGPfxwPPfRQUYUXBG95y1swPT2d8e9/97vf4SMf+QgoisJll10Gv9+PpaUlHDhwAO94xzu0Z+Id73gHnnnmGVx33XVFX2MuXFJBN5eRea6ZZOmgVzbV1NSkHUyYbq6U3iNhfn4+SbFGAp3dbkc0GtXqttu2bStqmULfbEplU+jrm36/H7Ozs1mDSDqQcTmVlZWGxuVkA6mdEymtIAiaGXddXR1isRiOHj1akKouFfoThVEDGb15OOGSks2W53mtAStJEjiOQyQSgcvlytt8Phf0deHt27cn3S/peM6pgThVgk1YCeQzXFlZgdvtNsx6ABJKtC9/+ctwu9347W9/m9G7+nxgYWEBTU1N2p8bGxuxsLCQ8eevBy6poJsJLMtqR0Sapg1nt8FgEGNjY7DZbHk7/uvdthobGwG8plgLBAKYnJyEz+eDoiiorKzUCPH5DLrMBFVVsba2hsnJSdTW1mLv3r1ph16mGywZjUYRCASwtrYGt9u9wV6ypKREU04pilL0keG5Rp3rSydutzspmyObWTYxAs/zGBkZgcvl2vSJQr/Z1tbWaqNtfD4fGhsbtaGhelOYzZSfiI9uU1OT4YGT2QIxz/NaIKYoCqIowmQyobe315CPhKqqeP7553HXXXfhlltuwQ9+8INzkt1earikgy4pIzidTng8Hhw9ehQURWk3fmqTiYCIGwRBQHd3d9EmN5Bx3JFIBJFIBB0dHaiqqtICsd6sRr/GfOqAxE3LZDLlvVHoszn9JFhSf11aWsKpU6cgiiJKS0tRXV0NQRBgNpuL8rAZGXWeWjoBkrO5TKo1lmU1JVymSQubwdraWsbRNqn0PzLp16hXst5Hd7PjfoDkQEw4vVNTU6ivrwdN05idnc0pmOB5Hl/84hcxOzuLJ598Ei0tLZtaU7HQ0Mm0j80AACAASURBVNCAubk57c/z8/NoaGhAQ0MDDhw4kPTz/fv3n/8F4hJrpBGnsWxNMlmWk9gI4XBYe0DJeBW/35+XuMEofD4fxsfHtc5+uocsE/+VPKAulyvtA5rPZIhCQLKsmpoaNDU1JTEScpn95IJ+1HkmKlW+0FPD1tbWEAqFYLVaUV1dnSQfLsb7kPpnPsbiqV7JxCYxlXq1urqK6enpovvoAonkYnh4OCOnN51g4qGHHoIgCDhx4gRuuukmfOELXyhqnf2ZZ57BrbfeClmWcfPNN+Pzn/980t//8z//M5599llMTU2hqakJHo8Hfr8fQKJE1dLSgrW1Nbz1rW/F3Xffjc985jM4dOgQvF4vBgYGcOzYMQBAf38/jh49WnRqnQ5vDPaCKIraCPV8mmTxeBxTU1NYXl6GyWTSMj79kXUzx1CimgKQl3cuQSYzcxLk4vE4PB4PWlpaik4BI+NyaJpGV1dXxqBCNjM9Y0JfO3S5XBuO/fra6mY8B7KtfWRkRDO+UVW1YFVdKvRrJyeWzULvV+vz+bC6ugqKojQRRbEEMWTt8/PzeTX5gsEg7rrrLiwuLmJwcBButxtutxsvvfRSUWhqsiyjq6sLf/jDH9DY2Ig9e/bgl7/8JbZu3aq95rrrrsOBAwewtrYGu92Obdu24cMf/jAA4HOf+xx4nsenP/1pPPPMM7DZbPjpT3+KwcFBAMBPfvIT3HfffQCAu+++GzfccMOm15wFb4yge8cdd8DhcGBwcBADAwNwOp05H2I9a6C1tRUcxyXVNskDSrIQo2wE4LUx5F6v19DImXygKAqWlpbgdrvBMAwoitoQ5DZDGcp3XE46pHMNI2IJjuOwvLwMl8uFjo6Oojqv6RuI2YQCqacKPTUsWzORzFZzOp1Fd41LFTmUlpZq5R3ChVVVdcO8OqNBLxqN4syZM3mNzlFVFX/6059w991349Zbb8UNN9xwTmq3L7/8Mu655x48++yzAID7778fAHDXXXelff0VV1yBe++9F+94xzsAJCiHZLDqBYA3RtAdHR3FwYMHMTQ0hGPHjkEQBGzbtg0DAwPYs2cP+vr6tAfI5/NhenpaG3iYqxmkZyMEAgGN0qTPhkmQ0wsQmpqa0NDQUNQMjtScRVFM4sSm4+fqa5sulyun/0Axx+WkQygUwvj4OEKhECwWCyRJMmz2YwQ+nw9jY2MF+8Xq6X/6DZdwdMPhMMLhMHp7e5Mc0ooBMm2htLQ0q8ghdXpIKBTaEIhTkwJ9MM9ndE4gEMAXvvAFeDwe/PCHP0xiABQbjz/+OJ555hk88sgjAIDHHnsMQ0ND+I//+I8Nr52ZmcFll12G+fl57XNiWRa7du0Cy7L4/Oc/j6uuuuqcrdUA3hg83e7ubnR3d2tKk1gshuPHj+PgwYN46KGHcPr0aXAcpwkFvvWtb6Gnp8fQg5mJjUBu/ImJCUQiEdA0jXg8jpKSEuzYsaOovqXEOJtQwFKPtOmaTIRET6S5pFGXLsjpx+UUo2Gjh96EpaWlBbt27dI2KJJt+nw+jf+aypjIlU0KgoDx8XEIgrCBSpUP0tH/yCZK5MEURWnZYr6qunQgUyLW19fR29ubs8mnvxf11yD1Vz3P2eFwwGw2Y3V1FeXl5Yapfaqq4g9/+AO+/OUv4/bbb8dHPvKRC4qZ8N///d9473vfm/S7kPmHbrcbb3vb27B9+3a0t7e/jqtMj0sq082FJ554Avfccw/e9a53wWKx4MiRI5pJzZ49ezAwMIDBwUGUlZXlnZkSvq0oiqiurkY8HkcgECiKWk2ffWaaJpDPtdKNfycc5tbWVtTX1xdVSkoMy43OECPZpl6xpm8y6YOc/lTR1tZW1LHhQHIw1xuLp6rqjGSb6eD3+zE6OoqamppNfa/pQFzSVldX4XA4NLMassZMXh1+vx933XUXvF4vfvjDH6KhoaFoa8qGfMoLu3fvxkMPPZRxOMFHP/pR/N3f/R3e+973nrsFZ8cbo7yQCwsLCygvL08qJZB5UUNDQxgaGsKRI0fA8zx6e3u1ILxz586MDSRJkjA9PY319XV0dHRsaEroj6vkASVNMBKIszk1hUIhjI2NnZNhjcRNiwg/LBaLFuRIADGyxkwo5qjzdNJhMjLJ4XCgra0NLperaEGrEGNxvaqOBGIAGwQxNE0niRx6e3uLKooBkkfnbNmyRftc0nl1EHOaEydOwGKx4Kc//SnuuOMOfPjDHy7qJpCLmfDjH/8YH//4x9HV1QWO4+Dz+fDMM8+gr68vyTfhxhtvxMMPP4ypqSntO/H5fLDZbDCbzVhbW8Pll1+O3/3ud0lNuPOMN4NuPhBFEadOndIC8cmTJ8GyLPr7+9Hf34/BwUG0tbXhN7/5DZqbm9HU1KRxHI1AfxQk9eHUJhgxMQkGg+jq6irq0EPgtezTarWm9WEgAUSfyRE1WGoNOxV6a8RzUdOWZRlutxterxeNjY0acyKX2Y9RFNNYPF2QUxQFgiCgqqoKzc3NcDgcRZ2Xl0+pgqzx+PHjuO+++zA5OalNd/inf/onXHvttUVZlxFmwqOPPorHH39cM16/8cYbcffdd+OOO+7Az372MwwPD4OiKLS1teH666/Hd7/7Xe3fvvTSS/jEJz4BmqahKApuu+023HTTTUVZe4F4Y9R0iwWO47QAe8stt2iTWI8cOYKhoSHcdtttOHXqFHp6evCWt7wFAwMDYFnWMOWJpmlN8koaE4QTGQgEMDMzg3A4DJvNhqqqKs1UpxhmKdnG5eiRKstNXaPH40kSIZBALMsyRkdHYbFYMDAwUFRTHeA1s/WGhgbs3bt3w+etr7MTA3KO45LKO+kGNgKvsR48Hg+6u7uLwnVmGAalpaUoLS3VRA6yLKO9vR3RaBRTU1MFeySkIhgMYnh4GNXV1RgcHDQsc3/22Wdx77334s4778QHP/hB0DStTZQoFg4dOoSOjg60tbUBAK699tq0mWhrayueeuqppJ/19/cjGAxqvYr3v//92LdvX9JrrrjiCpw6dapo6z2XeDPoGgBhKbztbW+D1WrFyy+/jIMHD8LhcGjZ8A9+8AONXkUoa/39/YYfHo7jQNM0VldXUVFRgcHBQS2A6L0R7HZ7UgAxWntNHZeTqpoygnQz1vT+DWNjY1oT0WKxgOf5nP4NRkFMe2iaztrky9RMJIGYNBNTzX4IH7mqqgp79uwp6rFa/9lnEjno6XWpG1quzYJk/n6/H9u2bTPcvPV6vbjzzjsRjUbxv//7v1rjEMAGQ6LNIp33wdDQ0IbXPfHEE3jhhRfQ1dWFf//3f0dTU9MF5ZtQDLwZdPPEZZddhieffFL789VXX42rr74aQOLmHx4extDQEH7zm9/gS1/6EmRZxo4dOzA4OIjBwUH09vZuaKTFYjGMj49DkiT09fVpDw3Lshu8EQh5fnl5GePj41BVNaeJeTD42ricwcHBoiqITCYTVFXF+vo6Wlpa0NDQoLERUv0b9Bxno5uF3taxULcuk8mEyspKzRJSb/bj9XoxPDwMSZLgcrlAURR8Pl/RNotoNIrh4WFYrdasn32moZykBKXfLPSBmFhH1tfXY3Bw0PB4qN///vf42te+hi984Qu49tpri1r+KRR///d/j+uuuw5msxkPP/wwrr/+evzpT396vZdVdLwZdPNEtpuTYRhs27YN27Ztw0033aSJLI4ePYpDhw7h3/7t3zSzlYGBAezcuRMHDx7Etm3b8O53vzunqol0nh0OB+rr6wEk115nZma0uiYJwF6vVzOgLua4HCB51Lk++0x149IrrRYXFw1PvCBeDBUVFZt2MdODoihtMq7X60VHRwdqa2szbhb6IJfPyWJ2dhZLS0vo7u4uyLc1dbMAkDRLb3R0FKIoaiZEa2trOb061tfXcccdd0CSJDz33HOGncQ2i0yeCHroN5ybb74Z//Iv/6L92wvFN6EYeLORdp5B6F/f//738cgjj6CtrQ08z6OlpUXLhvv7+7WsqxAIggC3242VlRUtuBATHZJtbqbWWoxR5/oGUyAQSJIN2+12+Hw+bbMoJtcZMG4srjf7IYwJvfw6Ey2MOJnpp2cUE8R0vbGxEfX19RtGEKWq6sgm/OSTT+K+++7D3XffjQ984APnNbuVJAldXV344x//iIaGBuzZswe/+MUv0NfXp71maWlJK3H85je/wTe+8Q0cPHjw9fBNKAbebKRdKKAoClVVVbBarTh+/Dhqa2uhKAomJiYwNDSEZ599Fvfddx8ikQj6+vq0QLxt2zZDdDH9uJwrr7wSLMtqx+lAIKAp8SRJ2mCiYyQ4EOOburq6TdU+9Q0mAkEQMDMzg8nJSW2zIGURvaKuUORrLK4/WZCsLJMIwel0arPDQqGQYeZAPpAkSaub63160xmuE5ri2toaPvWpT2F2dhY0TePGG28s+qDNXFSw73znO3jkkUegKAr6+vpQVVWFj3/849oggNbWVrhcLk1BSeryjz76KACgvLwcX/rSl7TJE1/+8pcv9ICbFW9muhcoBEHA8ePHMTQ0hEOHDuHVV1+FxWLB7t27tUDc1tamBb1YLIbJyUnE43F0d3fnzA7TZXHAxiM/eTiJaQ9FUVmNbwpFOBzGyMgIbDYbOjo6tNpnquNavkbrBMFgUJvAW+zsU5ZlLCwsYHp6Wsuac5n95AtiHZnPjDVVVfHb3/4WDzzwAO6++27s2LEDR48ehdvtxle+8pWC16KHESrYn//8Z+zbtw82mw0/+MEPcODAAfzP//wPgAvOL6GYeJOne7FDVVX4/X4cPnwYQ0NDOHz4MNxuN+rq6mCxWLC0tIRHHnkEHR0dBWef5Mivt70kwSkWi2m1z2Jzbom4pLu7OycfOZM3QiZJrizLmJycRCAQOCd1bUmSMD4+jmg0it7eXk14k83sh6wzlw8GuQ6hmfX09BjO9D0eDz772c+C4zg8+OCDRXFBS4d8TWpeeeUVfPrTn8aLL74I4M2gmw5vBt0LGCdOnMD111+Pjo4ONDY24tixY/D7/eju7tZMfsjsr0ICpdfrxejoKJxOp0YBi8Vimh0iCSCFdvnX19cxPj6+aWOdTIMuTSYTQqEQamtr0d7eXnTvADK40Wj2qa+9BgIBbfx7JrMfYniej7xZVVX8+te/xje/+U3cc889uPrqq89p7TYfkxoA+PSnP43a2lp88YtfBHDBmdQUE2/WdC9FVFdX49e//rVGOAcSmdfp06dx8OBB/PKXv8Sdd94JiqKwa9cuTdbc3d2d9XhNRp0rioJdu3Ylyab13g3r6+tal1+v58/lOaA3/i7GDLHUQZfxeBwjIyMQRRH19fWIRCI4dOiQ1lAiAa7QzYisH0BeAhCz2Yyqqiot68xk9mO1WhGNRsFxHHbu3GlYIryysoLPfvazsFqt+POf/1z0qcmbxc9//nMcOXIEzz//vPazi8Wkpph4M+hexNCT2QlYlsXOnTuxc+dOfOITn4CqqgiFQjh69CiGhobwwAMPYGxsTJuuOzAwgL1796K2thaiKOLEiROaYirdkZSiKK1xk0oJCwQCWFhYAM/zacciAQm6z8LCQsbrbwa5jMXJkT8QCGB5eRnRaDSvich6kUMxjMv1n2VNTY12/ampKVRWVkJVVZw+fTpr+QRIfP5PPPEEvv3tb+OrX/0qrrrqqvPGTDBCBQOA5557Dv/6r/+K559/PukzJq9ta2vD/v378corr1zyQfeiLi/86le/wj333IPh4WEcOnRIc4hPRabu6tTUFK699lqsr69jYGAAjz32WNFlqxciiJnLoUOHcPDgQRw+fBiTk5OQJAlve9vbcO2116K/v39TngCpY5F4nkc8HofD4UBzczNKS0uL2owrxFhcL5Ig68zkCkf8GEijr5jG5cBrNDaO4zTDF4JM5ZPnnnsOQKKuWldXh+9///tFH/Wei5kQDodRU1ODiooKVFdXIxQK4fHHH0dfXx/uv/9+/PjHP4YoihBFEc8//zw6Ozu1f3sBmtQUE5dmTXd4eBg0TeMTn/gEvv3tb6cNutm6q+9///tx9dVX49prr8UnP/lJ7Ny5E7fccsvr8Ju8vnjggQfwwgsv4DOf+QyWlpZw6NAhvPLKK5o3LakPb926Ne/6LbEXDIVCaG9v16TNpKa52bFIsixr0zl6eno2bSyezhXu/2/v3KOiuq4//r2APKpBHkLABwIDg7xRRLGNDQ/BYqLGFUCTrEqVJsb6pCsaf7Y1JlEhJGjlp4l5KWiWECURbH+IaRKwrYkDplqVlyAgIGhgBgYxjjxm//7AezIDM+Oow/t+1rprcc89d+65w8y+Z/bZ+7sVCgW6u7sxceJEODg46CXZ+DDX46UpxWKx3kazs7MTqampyM3NhYWFBeRyOczNzXHixAmD1VLTJzLh/fffx9///ndUVlZCLpfD3t4ely9fxurVq3Hq1CmUl5cjLCwMEokEPj4+AAAnJyecPHlyKIrUGJKRaXR5QkJCtBpdbaurW7ZsgZ2dHW7evAkTE5M+/UYTcrkclpaWGqsiX7hwgc2Gi4uLMW7cOOYbnjlzplYNWFWlMW0LTY9bFolPEnB0dMSUKVMMvlDGyyPa2NhgwoQJLPNPtRCnqmTjo2gwl5aWPvTs+ebNm9iwYQNsbGywZ88eFrPa1tb2SBKc2tAnMmH+/PnYvn075syZg66uLjg4OKCpqQlJSUlqfVX7jRJG70KaNqENqVQKKysrtLW1YenSpaisrERTUxNaWlr6ZFjl5+cjISGB7ZeVlSEzMxPPPfccfve73+HMmTMs1CktLQ0BAQEDc3MGQluYlrm5OebMmcO+KLzGQlFREc6dO4fMzEzU1tbCycmJifwEBgaioaEBZWVl8PLy0rnQpKnku2opmvr6embges+GKysr0dHRwaIzDAk/e25paYGXlxcLM7OyslKrGsKH11VVVTE1M9VxahOoISLm236YFGGlUonMzEykpqZi165deOaZZ9Re39Dlg/QRqVHtY2JigvHjx0MqleLGjRsIDg5WO3c4i9QYkiFvdOfNm4ebN2/2ad+5cycWL1782K+flJSE8PBwHDx4EDNnzkRSUhLeeecdtT6hoaG4ePEiALBc/cjISHb83XffHUyF+gGD4zhMmDABUVFRiIqKAvCzfqtEIsFXX32F9evXo6OjA3PnzsWPP/6I9vZ2+Pn56e2/1VUWSS6Xo7a2Fu3t7Uz2khfhNpS4e0tLC8rLyx8oIGNiYgJra2s1g6lJoIZPv+aNcWdnJ0pLS2FpaflQehKNjY3YsGED7OzscObMmUdKvRYYGgx5o8svFjwq2lZXbW1t0draipycHBQUFKCmpgaenp7Izs7uY3RVycrKQlRUlMGV/ocrRkZGEIlEEIlE+Pe//421a9fiD3/4A8rKyiCRSHDo0CFcvnyZieLw/uGHSeLg1dZqampgaWmJGTNmQKlUMgNXV1fH/MOPWhaps7MTFRUVUCgUjzx71qRmphoSVl5ejnv37sHKygqmpqbMraNrnEqlEkePHsW+ffuQmJiIBQsWDKnIBL7P5MmT0dXVBblcDltbW72jGkYjI96nq0toIyYmBrm5ubhz5w5effVV+Pr64k9/+hNaW1u1XissLAx//OMf8eyzzwLoqcX0/fffw8zMDOHh4UhKSjJoSZ3hBBFp/Tnd1tbGROALCwtx7do1PPnkk2r+YU0JAPoKiz9OWSQ+CcHZ2dngGXfAz1V+eQGcu3fvqmWrqYro8OnXxsbGaGhowPr16+Ho6IiUlBSDiKprQiaTYenSpaipqYGzszOOHTsGa2trte9Oc3MzQkJC4ODggLFjxzLRnP379yM1NRUdHR1QKpWQy+UoKCjAmDFj8OKLL6KwsBANDQ0IDw9HRUWFwcV/hjAjcyHtxIkTWLduHZqammBlZYWAgACcPn0aDQ0N+P3vf4/c3FwAQEBAAEpLS0FEsLa2ZvGV69atw5o1a+Ds7Izp06fjs88+g4ODA1paWjRer7GxEX5+fmhoaGCr+I2NjTA1NUVsbCyKiopgZ2eH8+fPa/z5Z2xsDF9fXwA/r+ACozN0jY+plUgkbKFOKpVCLBYz/7BcLsfVq1fx3HPPPVI59QeVRbKwsEBNTQ2MjY3h4eFh8Pecr7/X3NysUwBHdZxtbW1ITExEcXExWltb8dvf/hbx8fHw8PDot2q8mzdvho2NDbZs2YKkpCS0tLSwX3u5ubnYuHEjFAoFoqOjsXv3biQkJCAtLQ3V1dUwNzfHtGnToFAo4OTkhMzMTJass3PnThw8eBAmJib461//ylxSo4SRaXQNgYeHBwoKCuDo6IjGxkaEhISwbKPe7N27F8XFxfjoo4/U2vkPbXBwMF599VUsXrxYo4tCW565ELrWQ3d3N0pKSpCfn48DBw7g9u3bcHJygoeHB5sNT5s27bFiZPkEifr6ekilUowZM0ZNYP1BerT6wgvs2NnZPdQDo76+HuvXr8fEiRPx/PPPo6SkBEVFRUhOToazs/Njj0sTD/Md4PH390dWVhbc3d2HQuXdoYhgdLWxadMm2Nrasqe8TCZDcnKyxr7BwcFITExEaGgoa+M/pPn5+UhOTkZXVxf+8Y9/aPzQajK6RCSErvUiKSkJkydPxosvvqgmAi+RSFBeXg5ra2sWKREUFPRQhS9/+uknlJaWYuzYsSxMS1UYnE+QeNSySEqlElVVVWhpaXkogR2lUonDhw/jww8/xLvvvouIiIgB891aWVkxlxr/a1CXi62wsBBxcXEoLi6GkZGR4GLTjGB0tSGVShEbG4va2lpMnToVx44dg42NDc6fP48DBw4wIY+amhr86le/Ql1dndqsJSwsDGfOnIGnpycCAgLwwQcfYMqUKRo/tJrEPZqbmxEcHIzKykoAQF1dHaKionDlypWBeQOGGbwIPF+bjvcZuri4qInA9447ViqVqK2txa1btx5YdJL3D8vlchaXq09ZpNbWVpSVlcHR0RFOTk56G826ujqsW7cOrq6uSE5ONnjoF6A7CiguLk7t82ptba3TxRYSEoL09HQWEtbY2AgHBwd0dHTglVdegUgkwrZt2wx+D8MMweg+Lob40N64cUNN3OObb77B+PHjmdGVyWRYvHgxCgsL8etf/5otaKhy8eJFrF69Gm1tbTA2NmYLGgBGRMzwo8CLwJ87dw6FhYX44YcfoFAomAj8uHHjUFBQgNdffx0uLi6P5BvVVpJ+/PjxGDduHFpaWnD37l14eXnpHdmiVCqRlpaGjz/+GCkpKQgPDx+UWmX6uhfa2toQEhKCrVu3anUlFBQU4L333utT0XcUIhjd/uRRfGK8H+z5559n7oWtW7fi9u3bqKqqQmhoqNqCBg8vJO7u7o6GhgYEBgaitLQUVlZWgm9NhXv37uHcuXPYsWMHSkpKMHXqVBARZsyYwWbEj2qAeTo7O3Hjxg1cv36d+YH1LYtUW1uLtWvXQiwWIzk52eA6vw+DPi62jo4OREVFYeHChdi4caPaMb7MDhEhISEB5ubmLCNtFDN6M9IGgkWLFiE9PR1btmxBenq6xqSN3uIeZ8+exebNm8FxHEJDQ5GVlYWcnBzMmjULixcvxpIlSxASEtLH6IrFYvb3xIkTYW9vz6I3BH7GzMwMJiYmWLRoEfLy8mBkZITW1lbmG/7yyy9RXV2NSZMmMSMcGBgIW1tbvWabXV1dqKysxN27dzFr1ixYWFg8sCzSrVu3MG3aNHz++ec4dOgQUlJSEBYW1m+zW22hYL1JSUnB2LFj8cYbb8DS0pJNGHJycvDyyy/D0tISEyZMwA8//ACpVMrK6PC/pF566SU0NTUxqc4DBw70y/2MGIhI1yagB83NzRQWFkZubm4UHh5OUqmUiIiKioooPj6eiIjOnj1LPj4+5OfnRz4+PvTJJ5+w869du0ZBQUFkZGRE0dHRpFAoSKlU0vjx43VeVyKR0LRp06i7u5uIiOLi4kgsFpOvry9t3LiRFApFP93xyKC7u5uqq6spIyODEhIS6KmnniJfX1+KiYmhpKQk+uabb6i5uZnu3Lmjtl2/fp2+/vprqqiooPb29j7HVbf29na6desWXb16lZYuXUpOTk5kb29P8fHxdPDgQbp3716/3d+mTZsoMTGRiIgSExNp8+bNGvuNHTtWY3tMTAxlZGQQEdGqVavo/fff75+Bjky02lXB6A4w4eHh5O3t3WfLzs7uY2StrKy0vk5DQwOJxWL6/vvviYjo1KlT5OrqSiKRiN5++21avnw5vfnmm6y/QqGg2NhYEolENGvWLKqurmbHdu3aRSKRiMRiMeXl5Rn2hocZHR0ddOHCBfrggw9o5cqVNGPGDJo5cya9/PLLlJKSQr/5zW/o6NGjJJVKdRpb1a2trY327NlD/v7+lJ+fT+3t7XT27Fnau3cve2D2B2KxmBoaGojo58+LJjQZXaVSSba2ttTZ2UlERN999x1FRkb221hHIILRHQ7o+yWRy+U0ffp0On78OBERdXV1kaurK127do3u3btHfn5+dOjQIXrmmWfYOfv376dVq1YREVFGRgbFxsYSEVFxcTH5+fmRQqGgqqoqcnV1pa6urv68zWGFUqmktrY22rFjBzk4OFBkZCR5e3tTaGgovfbaa5SZmUnXrl3TOuO9cuUKhYaG0vr166m9vX1Ax676ENf1y8nY2JgCAwNp9uzZdOLECSIiampqIpFIxPrU1taSt7d3/w54ZKHVrgo+3SGEPr7hjo4OLFmyBMuXL2cLZoWFhXBzc4OFhQVMTU2xdOlSfPzxx5g7dy47LycnB9u3bwcAREdHY+3atSAi5OTkYNmyZTAzM4OLiwvc3NxQWFg4miT4dMKXYTcyMsKlS5dgZ2fHKjzwIvAfffQRfvzxR7i5ubG0Zn9/f2RkZODIkSPYu3cv5s6d2y++W11RNb3vQ9v1NZXMeVCBUIHHQJdFHoSnw6hGH9/wkSNHyMTEhPz9tydCrgAACBtJREFU/dmWnJxM8fHxFBoaSj4+PjRp0iQSi8V0+/Zt9tre3t5UV1fH9l1dXampqYnWrFlDR44cYe0rV65kM2gB/enq6qLi4mI6ePAgrVq1iqZOnUoxMTF0586dQRuTvr+cVImLi6Pjx48L7oXHR3AvjGSOHz/OjDIR0eHDh2nNmjVqffQ1upGRkeTo6EgikYgtwqiSkpJCnp6e5OvrS2FhYVRTU8OOGRkZsQfBwoULDXmLww6lUjnYQ6DXXntNbSFt06ZNffrIZDK24NrU1ERubm5UXFxMRETR0dFqC2n79+8foJGPCLTa1f5R0BAYUB5Ggg+AVgm+7u5u/Otf/0JqaipKSkqQkZGBkpIStdeZPn06zp8/j0uXLiE6OhqbN29mxywsLHDx4kVcvHiRifmMVvozyUEmkyEiIgLu7u6IiIjQmIiTn5+PU6dOYefOnTAzM8PWrVuZ2NKzzz6LJ554AgEBAZg1axZ8fHzg7++P0NBQbNmyhZXjeeedd7B79264ublBKpWOpFI6g4suizwozweBh6azs5NcXFyoqqqKLaRduXJFrc++ffvUFtJiYmKIiOjKlStsIS0rK4ssLCzYQtquXbto165dWq/7n//8h375y1+yfW2hRwKGRd9QMB6pVErW1tbM1cG7EAT6FWGmO5IxMTHBvn37MH/+fHh6eiI2Nhbe3t7Ytm0bm3HGx8dDKpXCzc0Nu3fvZhlD3t7eiI2NhZeXF9atW4e5c+cycZcHlVj59NNP1eT6FAoFZs6cieDgYGzbtg0eHh5wc3PTmJ2UlpYGOzs7BAQEICAggGlcAEB6ejrc3d3h7u6O9PR0g7xHI4mcnBzExcUBAOLi4pCdna2zvyC8P8TQZZEH5fkgMGjo4xvmOXLkCM2ePVstAaO+vp6IiK5evUomJib07bffspk37yfkOXTokMbXlkql5OLiQlKplGQyGbm4uJBMJjPE7Y0Y9A0F4wkNDaW//e1vbF9IohkQhJmuwIPRt8TK119/jZ07d+LkyZNqEn583+bmZtjb20MqlcLU1BTLli1DTk6OXmM4ffo0IiIiYGNjA2tra0RERCAvL+8x72z4MW/ePPj4+PTZer+PukLBgB5dhMuXL2P+/PmsLTExEWVlZSgqKoJMJtNZnkrA8AhxugKMoKAgVFRUME2CzMxMHD16VK3PhQsXsGrVKuTl5cHe3p61q2pLlJaWor29nS3IaKoiCwBffPEF/vnPf0IsFmPPnj2YMmWKxgq0o7GKrK7agE8++SQTmWlsbFT7P/Tm2LFjWLJkCat0AoBVXjYzM8OKFSvw3nvvGW7gAg9EmOkKMPTxDW/atAnt7e2IiYlBQEAAFi1aBAAoLS1lSQHbt2+Hn58fM7qaWLhwIWpqanDp0iVEREQwH2VvKioqkJycrNU3nJCQwPzCYrFYTfjH2NiYHePHORLgk2gAaE2i4cnIyMALL7yg1tbY2Aigx7WYnZ0NHx+f/husQF90+R4GwxEiMPzpHUj/oCiIrq4usrS0JCKio0eP0iuvvMLan3jiCdqzZ49W37AqqamptGLFCrY/3KIpjh07Rl5eXsRxHBUVFWnt9/nnn5OFhQWNGTOGRCIRS6LJzs4mOzs7EolEFBsbS+Xl5TRx4sQ++g58Eo23tze99NJLakk0AgZDSI4QGDj0CWHjM6WIiL788kuaPXs2EfUspDk7O5NMJqO8vDwyNzdnRuVBxnvOnDn01Vdfsf3hZnRLSkqorKyMnn76aa1GV5POBv8gElTBhhTCQprAwKGPmyI1NRXe3t7w9/dHamoq02i1sbHBX/7yFwQFBSEuLg5BQUGwsbEBoNu/e/36dVRXVyMsLIy1qYawPSisaijg6ekJDw8PnX14nQ1XV1e1RUoiwrfffsv0OPQJJRMYHISFNIF+YcGCBViwYIFa21tvvcX+TkxMRGJiosZzV65ciZUrVyIrK0vvyIXMzExER0erFZBUFXLx8/ODmZkZHB0dNdafIyJs2LABubm5+MUvfoG0tDTMmDEDQI/fdMeOHQCAP//5z1r9zwOBpoVGiUQCqVQKKysrVil5tC5ADgcEoyswZNE3hA3oMbr79+/vcz4AuLq64qmnnkJYWBgOHz6s8fxTp06hoqICFRUVkEgkWL16NSQSCWQyGd58802cP38eHMchMDAQixYt0liBQR90qYLpWhATGEHo8j0Im7AN5oaeSUEVABcApgD+C8BbQ79pAGpwv+bf/TZrAGb3/54AoALAPABXtFzrQwAvqOyXA3AE8AKAD7X166f7LgAwU8uxOQBOq+z/z/2NA9AMwERTP2EbOpvg0xUYshBRF4C1AE4DKAVwjIiKOY57i+M41RiwZQAy6b61uY8ngPMcx/0XQD6AJACVOi43CUCdyn79/TZt7YNFEQB3juNcOI4zRc+9n7x/7/kA+KqkcQD0y0gRGFAE94LAkIaIcgHk9mrb1mt/u4bzvgPgq9rGcZyzwQdoQDiOWwLgfwHYAfg/juMuEtF8juMmAviEiBYQURfHcfyDyBjAQSIqvv8SrwPI5DhuB4ALAD4dhNsQeACC0RUQ6OEGgCkq+5Pvt90AENKrvaA/BkBEJwCc0NDeAGCByn6fB9H99ioAs/pjbAKGQ3AvCAj0cBLAcq6HYAByImpEz4wykuM4a47jrAFE3m8TEHgkhJmuwKiA47gM9MxYJ3AcVw/gDQBjAICIDqBn5rgAPX7fnwCsuH9MxnHc2+jxpQLAW0QkG9jRC4wkOPW1BwEBAQGB/uT/AcIHhEO8PXT5AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" } } ] }, { "cell_type": "code", "source": [ "# Regresion bi-lineal\n", "df = pd.DataFrame({\"Y\":y, \"X1\":x1,\"X2\":x2})\n", "df[\"ones\"] = np.ones(N)\n" ], "metadata": { "id": "6lddSc6MH1EQ" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "y = np.reshape(df.Y.values, (N,1))\n", "X = df[[\"ones\",\"X1\",\"X2\"]].values\n", "X = np.matrix(X)" ], "metadata": { "id": "bPuit2V_IEfX" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "theta = (X.T@X).I @ X.T @ y\n", "theta = np.array(theta).flatten()\n", "theta" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "vFFyt54JIMRu", "outputId": "75a7a985-4211-4843-daff-7ff55f8ccb74" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "array([-1. , 0.2, -0.5])" ] }, "metadata": {}, "execution_count": 673 } ] }, { "cell_type": "markdown", "source": [ "# Datos de boston " ], "metadata": { "id": "Hr5FDYckQwiS" } }, { "cell_type": "code", "source": [ "# Tomar los datos de las casas de boston y hacer una regresion lineal tomando \n", "# el average number of rooms per dwelling.\n", "data_url = \"http://lib.stat.cmu.edu/datasets/boston\"\n", "raw_df = pd.read_csv(data_url, sep=\"\\s+\", skiprows=22, header=None)\n", "data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]])\n", "target = raw_df.values[1::2, 2]" ], "metadata": { "id": "xu1trxVSQkSP" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "df = pd.DataFrame({\"mean_\":target, \"rm\":data[:,5]})\n", "df[\"ones\"] = np.ones(len(target))\n", "df" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 424 }, "outputId": "b5c1a673-27b6-4fbf-c85a-f2a7282bad4f", "id": "9Kntho4-QkSQ" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/html": [ "\n", "
\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
mean_rmones
024.06.5751.0
121.66.4211.0
234.77.1851.0
333.46.9981.0
436.27.1471.0
............
50122.46.5931.0
50220.66.1201.0
50323.96.9761.0
50422.06.7941.0
50511.96.0301.0
\n", "

506 rows × 3 columns

\n", "
\n", " \n", " \n", " \n", "\n", " \n", "
\n", "
\n", " " ], "text/plain": [ " mean_ rm ones\n", "0 24.0 6.575 1.0\n", "1 21.6 6.421 1.0\n", "2 34.7 7.185 1.0\n", "3 33.4 6.998 1.0\n", "4 36.2 7.147 1.0\n", ".. ... ... ...\n", "501 22.4 6.593 1.0\n", "502 20.6 6.120 1.0\n", "503 23.9 6.976 1.0\n", "504 22.0 6.794 1.0\n", "505 11.9 6.030 1.0\n", "\n", "[506 rows x 3 columns]" ] }, "metadata": {}, "execution_count": 675 } ] }, { "cell_type": "code", "source": [ "plt.plot(df.rm, df.mean_,\"go\", alpha=0.4)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 282 }, "outputId": "7c8bcebf-1ee8-4fe5-e6ff-37dd7f39bf99", "id": "Evc5nPSgQkSR" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "[]" ] }, "metadata": {}, "execution_count": 676 }, { "output_type": "display_data", "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXEAAAD4CAYAAAAaT9YAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9e3Ac95Xf+/l1T88LM4OZwWNAPCQQBESKK1KUTFmyKUdLi5Ky2Xh3XcmmEinZVNlVrlIee1O5dB63tnZd3qQquVbd3FTlFjdbV64wG2qzu07seJ3dSKJMa325kizJJAHLIgUCfAAgMXjMDObVPdM9/bt/NGcEkCAJkgA4AH4flQrAPLp/3cM5ffqc7zlHSClRKBQKxcZEu98LUCgUCsXdo4y4QqFQbGCUEVcoFIoNjDLiCoVCsYFRRlyhUCg2ML713Fl7e7vs7+9fz10qFArFhufDDz+ck1J2LPfcuhrx/v5+Pvjgg/XcpUKhUGx4hBCXbvacCqcoFArFBkYZcYVCodjAKCOuUCgUGxhlxBUKhWIDo4y4QqFQbGBWpE4RQlwECkANcKSU+4UQSeCPgH7gIvC3pJTZtVmm4l4ZnR/l+PhxpgpT9ER7ODRwiKG2ofu9rHtitY9pPc+RWvun2xlOD5OzciSCCTpbOhFCMF2c5vLCZQqVAi3+Fp7seZKX9r7EUNvQPe1/ufcCq3buRudHeW3kNd6dfBdgybrXCrGSLobXjPh+KeXcosf+TyAjpfw3Qoh/ASSklP/8VtvZv3+/VBLD9Wd0fpRXT71KMpQkFoiRr+TJmBm++thXN6whX+1jWs9zpNb+6XZqbo2RmRE0NPKVPLZrI6XElS4ZK4MudPrj/diuzUPJh/j13b/OWxffuqv9L7f2scwYUkoG2wbv+dyNzo/yyl++wrn5cySDSaSQZM0sDyUf4usHvn5Pn4UQ4kMp5f7lnruXcMqvAkev/X4U+LV72JZiDTk+fpxkKEk8GEcTGvFgnGQoyfHx4/d7aXfNah/Tep4jtfZPt3OlcIWwESYZTlKyS1RrVWzXZro0TTwYJxKIkK/kSYaSzJqzfPv0t+96/8utfaY0w6w5uyrn7vj4cWZKM7SF2gj7w7QYLY11r+V3baVGXAJvCCE+FEJ87dpjKSnl1Wu/TwOp5d4ohPiaEOIDIcQHs7Oz97hcxd0wVZgiFogteSwWiHGlcOU+rejeWe1jWs9zpNb+6XZyVo6QLwSA7drYNRvbtak4FQzdwK/5KdtlQr4QFafCRH7irve/3Notx6LiVO75eOrbtxyLoBFsPFZf91p+11ZqxJ+WUj4O/BLwD4UQf2Xxk9KLySwbl5FS/r6Ucr+Ucn9Hx7JVo4o1pifaQ76SX/JYvpKnO9p9n1Z076z2Ma3nOVJr/3Q78WAc0zEBMDQDQzcwNIOAL4Bds6m6VcJGGNMxCfgC9MX67nr/y6096AsS8AXu+Xjq2w/6gli21Xisvu61/K6tyIhLKaeu/ZwBvgt8FkgLIbYBXPs5s1aLVNwbhwYOkTEz5KwcrnTJWTkyZqaR1NmIrPYxrec5Umv/dDvd0W7KdplMOUOL0YJf92NoBl0tXeSsHMVKkVggRsbM0BHq4Cv7vnLX+19u7Z0tnXSEOlbl3B0aOERnSyfz5jzlapmSXWqsey2/a7dNbAohWgBNSlm49vubwDeBZ4H5RYnNpJTyn91qWyqxef+oZ+WvFK7QHe3eVOqU1Tqm9TxHau2fbmckPULWypIMJekIdyCEIF1Mc2nhEoVqgRZjeXXK3ex/ufcCHBs+xntT7wHwVO9TvLjnxbs+ptdGXuO9yfeQyFVTp9wqsbkSIz6A532DJ0l8TUr5r4UQbcAfAw8Al/AkhplbbUsZcYVCsRz3UwK7EdRbtzLit9WJSynHgUeXeXwezxtXKBSKu2axEe2N9ZKv5Hn11KurZkRvd4FYrFoBGj+Pjx9vGiN+K1TFpkKhuK+spUSyfoEoVAv0xnopVAu8eupVRudHG6/Z6OotZcQVCsV9ZS2N6EouEBtdvaWMuEKhuK+spRFdyQVio6u3lBFXKBT3lbU0oiu5QAy1DfHVx75K1B9lKj9F1B9tqqTm7VjX8WwKhUJxPXUjenz8OFP5Kbqj3Xx515dXxYgeGjjEq6deBViiPPnyri/fsIaNYrSvZ0UNsFYLJTFUKBTrzWaokbgniaFCoVDcC/e7DfJG9rJXgoqJKxSKNWMlEj/FvaGMuEKhWDM2YxvkZkOFUxQKxapTD6EcGzlGX2sfu9t3k4p43apjgRhT+an7vMLNg/LEFQrFqrI4hPJA7AEWzAVOTpwkXUwDG6uQZiOgPHGFQrGqLA6hPNzxMCcnTqKh8fO5nxPwBZZI/O530nMzoDxxhUKxqiyukkxFUhzoO0A8GGdyYXJJIY1Keq4OyhNXKBSryuKpPeAZ8oAvwBce/AIvP/Fy43UbvXtgs6CMuEKhWFVWWiU5VZiiN9a75LG1Snpu5rCNCqcoFIpVZaW9SNare+BmD9soT1yhUKw6K6mSXKnHfq9s9rCN8sQVCsV9Yb26B270oQ+3Q3niCoViRaxlXFmydo34rk+0wubSqitPXKFQ3Ja1iCuvV6x6ow99uB3KiCsUittSjytXnAo/vvRj3r74Nufmz3Fs+Ng9b3Ot+6ps9KEPt0OFUxQKxW2ZKkxhaAbvTL5D2AgTD8YpO2XeGH+Dl/a+dFcGcT0lhpu5Ha3yxBUKxW3pifZwOn2asBEmbIQRQlCqlihVS/zmn/8mR94/csdhkI0+oLhZUEZcoVDclkMDh7wGVtJLQs6UZjifOU9nSydCiLuKZ69nrHp0fpQj7x/ht374W3d1wWlmlBFXKBS3ZahtiBd2vIBEkjNzZM0sg8lBooEoiWDiruLZ6xWrVsU+CoVCAby450VMxyQZSnLiwgmCRpCyXeaxrscAL549kh7hyPtHVixDXI9YtSr2USgUCpZ6zgIBwIG+A41hD2OZMc5nzjedx6uKfRQKheIadc+5XjIf8AVwpUu+kmc4Pcze1N6m83hVsY9CoVBcx3Lx7IHEADuSO5a8rhk83pslUAcTg5si2SmkXLty1+vZv3+//OCDD9ZtfwrFZqRZ26oeef8IhWphicebs3JE/dElfcTvB/VzdqVwhe5oN4OJQd66+BbJUHJJ861mLQISQnwopdy/3HMqnKJQbCDqSotkKElvrJd8Jc+rp15tCuOzXl0J74brE6hH3j+yaZKdKpyiUGwg1qtU/W7YSOXtmynZqTxxhWIDsZ6l6nfDRilv30zJTuWJKxQbCFWqvjpsps6GyogrFBuIzWR87icbKfRzO1asThFC6MAHwJSU8q8LIbYD/xVoAz4E/p6UsnqrbSh1ikJx71yvtGgWdYpi7Vgtdcr/BnwM1LMB/xb4d1LK/yqE+D3gq8CRe1qpQqG4LRsl7nwzmlUiuVFZUThFCNEL/DLw/177WwBfBL5z7SVHgV9biwUqFIrNw2ZvRnU/WGlM/P8G/hngXvu7DchJKZ1rf08CPcu9UQjxNSHEB0KID2ZnZ+9psQqFYmPTzBLJjcptjbgQ4q8DM1LKD+9mB1LK35dS7pdS7u/o6LibTSgUik3CZtJnNwsriYkfAH5FCPHXgCBeTPzfA3EhhO+aN94LNIdQVaFQNC2bSZ/dLNzWE5dS/kspZa+Ush/428APpZQvASeAv3ntZX8f+B9rtkqFQrEpWE2J5Gae1nMn3ItO/J8D/1QIcR4vRv7q6ixJoVBsVlZLn60SpJ9yR2X3UsofAT+69vs48NnVX5JCodjMrIZEcrNP67kTVO8UhWILsNm02c3eQ2Y9UWX3CsUmZzOGHlQPmU9RnrhCscnZbKGH0flRZkozvD72OqlIin2pfYSMUNP0Ll9vlBFXKDYoKw2RDKeHyVVy5C1P2rerfRcdLR0bMvSweCjGCzte4PT0aV4fe53nB57fsA2s7hVlxBWKDcib59/klXdewXEdOiOdVJzKshN+RudHGc+OowudRCiB6ZicnDjJns49DCQG7uMR3B2L7yriwTjbotsaI+C2ogEHFRNXKDYco/OjvPLOK+hCpyvSRcWpMDIzQs2t3VC+fnz8OHtTe3FxsRyLkBFCQ2M4Pbwh29eqis8bUZ64QrHBOD5+HNu1aY+2IxCEjTAAk4VJgr7gktdOFabYkdxBLBDj7NxZcmaOeDBOIpTYkJ6rqvi8EeWJKxQbjKnCFF0tXVi21Xgs5AsxU5y5wZjVjV4qkmJX+y7iwTjj2XHem3yPf/CDf7DhKh3VUIwbUZ64YsuyUbXTPdGeRggFIGgEyZpZfJrvBmN2aOAQr/zlK4xnxxnLjKFpGpZj0dXSxYlLJzg1fYrvnf0ehz93mOcGn7sfh3NH1Cs+j48fZyo/RXe0my/v+vKG+NzWCmXEFVuSxSqH3lgv+Up+2cRgM3Jo4BCvnnqVPZ17mMpPMV2Yxqf5OPy5w8uuXUrJTHkGw2dQrpapuTUWKgsEfUFqbg1d6Lzyziv0J/oBmv7CttGHYqw2yogrtiQbWTu92BsN+oJ84cEv3NTYHh8/zmDbIFOFKeLBuCc3tHJYjkUynKRcLZMIJ5guTPPayGuYjrkhL2xbGRUTV2xJNrrKYahtiEMDh+iOdjNVmOL4+PFlY9v144wH45iOScgIUXWr1NwahUqBQrXAh1c+ZMFa4IcXfqgGNmxAlBFXbEk2etn2Skvp68e5q30XZbtMa6AVKSWVWoWZ0gyGbqBrOmF/mIn8BKZtLnn/alzYVMvYtUUZccWWpNlVDrczfCsdc1Y/zoAvwOd6P0ckEKEt2IYmNMJGmEQgQW+0l7ARZiAxwOnp00vef68Xts3Yt6XZUDFxxZakmVUOK0m6ThWmMDSDM9NnyFpZdKEjpSRXyQE0YuSLj/PM1TNM5CYI+8O0uq30xfoI+8ONUnxXurw+9jo5K0csECNfyd9zP5KNnHvYKCgjrtiyNKvKYSWGz9AMTlw8QVuoDV3onJs/h+M6PNz+cMPbrRv9obYhLmYvcvTMUTpbOomHvATnWG6ML+/6Mu3hds7OnWW6OE0imMC0TQqVwqpc2FTL2LVHGXGFoslYieGTUno/kaSLaQJ6AAANbVmj/+3T3yYZTJIMJwHYkdjByMwI/+v8/2J7YjsaGj7Nx+6O3ZiOuWqKFFVhufaomLhC0WSsJOnqSIeD/QcJ+UJkrAxBI8jO5E5cXODGhOREfoJ46FNDGg1E2d2+m4yZwa7ZJEIJnn7gaYbahlZVkdLsuYfNgPLEFYomo17MA9w0Nt0T7aFQLfBM/zMAWI6FRBLyhYAbjX5frI+cmcOn+ZguTWPaJq50aQ208uu/8Oto4lN/bjXDHc2ce9gsKCOuUDQZKzF8iw39Q20PceLiCQAO9h9seLuLjf5X9n2Fw28eplAtEAvEcKVLoVqgI9zBWGZsybZXO9zRrLmHzYIy4gpFE3I7w1c39K+NvMZ7k+9RkzVi/hgzpRke6XzkBqP/3OBzPPPJM7x96W1K1RLxYJznBp7D0A2G08N0tHTc1OvfqD1mtgrKiCsUTchKDedUfoqAEQABfp8fu2bf9LWxYIyXn3h5SejkauEqGTPD0dNHsRyLXe27+CdP/pPG+0fnR3nlL19hpjSD5Vh85PuI09OnOfz55fu0KNYfldhUKJqMlRbIHBs+xieZTxAIEsEEAsEnmU84NnyssZ1vnPgGv/Rffolf+i+/xKmrpxjLjDXeny6m+bPRP2PBWmBn2072du2lZJf4k5//SWNfr428xrn5c2hCIxlOogmNc/PneG3ktfU7IYpbooy4QtFkrLQa872p90iEEoSNMEJ4wyESoQTvTb3H6Pwo3zr5LX506UcEjSAhX4jZ0ixvjr/J6PwornR5+9LbXMhdwJEOk4VJarUayVCSWXO2sa93J98lGUwSMkIIBCEjRDKY5L3J9+7HqVEsgwqnKBRrxN3Gku+kQEZIccPfAsHx8ePMmrMkQ8nG5J++1j4WrAUm85OUqiXGs+O0GC20h9uxXZux7BgD8QFq1JbIE6WQS/YhhUSy9DHF/UN54grFGnCnPUMW90oZy4wtCXvA8oqRp3qfImNlMG0TicS0TTJWhid7n2Q4Pcwnc5/wybz3f97KEzSC+HU/g8lB9qT28GjqUeLBOI7r4Nf9+H1+JgoTBHyBxr6e7HmSrJmlbJeRUlK2y2TNLE/2PLk2J05xxygjrlCsASsNicBSg29oBrOlWV772Wv8yUd/wkfpj/jz0T/ne2e/R7qYXnIReHHPi+xs24krXbLlLK502dm2k8/3fp7x7DhCCHyar+FlzxZnGwZ6qjDFvq59RANRitUiVaeKlJKslaUj1NEoxnlp70s8lHwIifecRPJQ8iFe2vvSup1Lxa1RRlyhWAPupF953eBXnArvTL5Da7CVh9sfZiI/wXc+/g7FapEXdrxA2B9e4s0PtQ1x+POHeX7H83ym+zM8v+N5Dn/+MOez59mb2ksimKBslwEQCC4sXKCzpZNDA4foifYQMkI8N/AcO9t2Yrs2pm3ySMcjfP3A1xthn6G2Ib5+4Os8P/A8n9n2GZ4feH7J84r7j4qJKxRrwJ30DKnHwH88/WNajBZCRgi7ZrNQWaDFaCFn5RrePCztibKcnvzomaONCfc/mfoJF3IXsBwLBOhC96b9JAZ56+JbJENJfvmhX27ow2/VM0XFwZsTZcQVijVgMDHIK++8guM6dEY66Y32omv6sm1d6wY/a2VJhBIUKgXOzp/FdV0SwQSFaoGTEyc50HeAjpaO25bEL55w/6WdXyJdTPPWhbdIhBLs7dpLvpLnrYtv8Wz/s5zPnr+hKnRxQtbQDKbyUwy2DaqRbU2KMuIKxSozOj/KWxffYm9qL1P5KdLFNJly5qaDjOsl9AE9gFk1+WTuExasBVxcpvJTRPwR0sU0f/TRHzHUNsSjnY/ecv/X91756dWfAvB41+NLPPrz2fO8/MTLN6x9cS/z18+/TtbK0tfahxZc/m5AcX9RRlyhWGUWJzXrhi5n5TifPc9zPHfD6xeX0H/v7PeYLk+TCqcAL9RSskt0i25cXLJmlqvFq4zOj97UiF7fe8VyLA72HyQVSTVeczPJ4rHhY5ybP0fVqRIPxpk352kLt3F27mzj/aofeHOhjLhCscpcr/NOF9N8PPsxl/OXAZbViw+1DfE7v/g7APz3j/87lVrFm4eJpFApkKlkeCD2AM9uf5aAL7DEE76ZHr3+/JH3j1CoFpbsb7n4/Oj8KG+Mv0EqkmoMVp4rzxHQAlR91Vu+V3H/UOoUhWKVWdwPPF1Mc3LiJDkrR19r37J68cUa8Xcn3+UXH/xF+uP99MZ6MXSDzpZOIkaEX9n5K6QiqSUql5Xo0Vfa0/v4+HFSLSk0tEYFaF+sj4v5i/h9ftUPvElRRlyhWGUWG82PZz9GQ8PFZXf77hv04tcb4aAR5MzMGXa17SLoC4IEx3XY3bG7Ec5Y7AnfSo9evzgcPXOUoB7EtE2m8lNE/dFlE5N17XjJLjUKiFqMFqL+KI92PnrL9yruH7cNpwghgsBfAIFrr/+OlPJ3hBDbgf8KtAEfAn9PSlm9+ZYUiq3B4pj05fxl+lr76Ax3cnbuLO9OvkssGCMRSACeEa65Nc5Mn2lICcvVMpcWLrGvax/pUpqP5z5mm7ONq4WrhIzQklaxNyvRH0mPcGnh0pJhy7eTENYHTRzoO8DZubPkzBx+3c+v7vzVRqhH0XysxBOvAF+UUj4K7AP+qhDiKeDfAv9OSjkIZIGvrt0yFYqNxVDbEIcGDtEX6+NC5gJvjr/JXHmOeDDOgrnAWHaM0flRhtPDjMyMYDom8WAcQzfw+/xcXrjM62OvIxAMJYa4vHCZo2eOMrkw2TDEo/OjjGXG+JOP/oS3L75NupgGaBjslVaM1qnfQQR8Ab7w4Bd4pv8Zdrbv5MU9L67XaVPcBbf1xKU3kbV47U/j2v8S+CJQ/3SPAt8Ajqz+EhWKtWEthx3UwyS9sV5Op0/jui6ThUkkEk1o7E3t5fj4cc/7Rms0qQobYWL+GJZtcaDvACMzI8QCMXpae8iWs5ybPwfAm+ff5JV3XmHBWiBfyWO7NvPmPHs696BrOvFgfNmK0VupStQotY3JitQpQggdL2QyCPw/wBiQk1I6114yCfTc5L1fA74G8MADD9zrehWKVeF6PfRqF7G8NvIa5+bOUalVcGoOQV8Q27XJmll+ZeevNIp2EsEEGdNrYhU0gli2RU3WkEim8lONCk6ARCjBdHGaY8PHeGfyHXShs6NtB7OlWabyU9gBm8n8JN88+E2Ojx+/qynzapTaxmNFRlxKWQP2CSHiwHeBXSvdgZTy94HfB9i/f7+q21U0BYsTgsA9F7FcX+X4vbPfY3t8O4lQgog/Qs7KEfFHyFpZzs6dJV/JM5AYoDvaTbVW5Uz6jFexGUzwaOpRkqEk06VptkW3NfZhOiadkU7em3oPx3Voj7QjEHS2dBL1R6k4FRasBY6eObqk0vJmY9cUm4M7UqdIKXPACeBzQFwIUb8I9AJK/a/YMNxJg6rbcb3C5PT0aUp2iUK14E3dCSRYsBaYKc2QCCTImll+fPnHDCYGGUwM8rPZn9ER7uCzPZ+lI9zBz2Z/xvMDz2NoBtlyttECtmyX6Y16SczOSCemYzbWUK1VGZkZIWAE6I31ekMchKBcLStVySZnJeqUDsCWUuaEECHgObyk5gngb+IpVP4+8D/WcqEKxWpyJw2qbkbd+/7+ue8T9AV5fNvjaEGNSq3Cg60PMlWYIhqIUrALtIXbyFk5hBDMlmepOlX+5Vv/krA/TMQfQdd0FqwFEqEEv9D5C1g1i8OfO8wr77zCdHGazkgnOxI70DWdp3qfolgtMjIzAkDIF+JC7gIBX4DHux5ntjTL2bmzXC1eJV/J882D31TGexOzEk98G3BCCDEMvA+8KaX8AfDPgX8qhDiPJzN8de2WqVCsListgLkZi71vIbxpOicnTpIupkkEE0T9UTrDnYR8IbJmFl3otBgtjOfGGc+OM1WYYqY8w+TCJAKB7do81fsUz/Q/w47kDq4UrvDc4HMc/txhOls6mViYYDI/ybP9z/LinhfRNZ09nXsI+AJMF6cp22X+6o6/CsDJiZNYjkVXpIuZ0swth1EoNj7CE5+sD/v375cffPDBuu1PobgVdU/6SuEK3dHuFalTlnjfRpDHux7n7NxZTMdEIAj6guxq39XoGvjCjhf4zs+/w0czH1GpVbyim5pJxak0RqMFfUG2J7YT8oV4pv8ZclaOqD/KoYFDfOvkt5g1Z6k4FQK+AB2hDr5+4OsAS9Y+U5ohZIQ4M30Gy7EIGSHKdpmQL8SjXY8S9UdvaHal2DgIIT6UUu5f7jnVO0Vx31hLid9KuFMlxmJFS52TEyfZ2baTc/PnCBme1x3wBdjZtpNtkW1M5acI6AECeoCKU6FSq1CulhvvNzSDeXMeKSXFapGyXaazpZPDnz/cmGafDCVJBBOYjtmYZv+Ng99Ysvb62q4Wr9IV6WrE0B/rekw1rNrkqLJ7xX3hTmdQNgOLFS3JULKh754rz3Gg70DjdVF/lMOfP8w3Dn6D3/3i7/LYtsdoD7fjSIeqU8Wn+TA0A9MxyVpZ/JofRzoEfAEQUL87vtU0++upa7xTLSnSxTQhX4gDfQdIRVKqYdUmp+k98fvtrSnWhtWW+K0Hi0vcd7Xv4uTEScK+MFnrU+97OQVIT7QH27VJRVKUqqWG1+1KlwVrgZ3tOynZJTrCHYR9YVqDrY3KyqJVZCo/Rc7KUXW8rhYt/pZlW9EOtQ3xzYPfbNwtxAKxRqxfSQs3L03tiW9Eb02xMlZT4rdeLO5OmIqkONB3AIlESnlLCd+hgUNoQkNIQWugFV3T0YRGSA+hazolu0RPtIfeWC+mYzIyM8JIeoSh5BDnMufImlkKlQKmY7JQWaA10HrT70HdI4/6o0pauEVoak98I3pripWxGhK/1WC5Oz1g2bu/6yfmBHwBdrYv731fv92n+57m7Lwn+4sH4jyWeoxdHbs4ceEEnS2dJMNenD1shLFsi6yVZVf7Li+uXpjClS5+3U/YCNMWbmv0QVnue6CqLrcWTe2Jb0RvTbEy7lXitxosd6f3rZPf4pW/fGXZu7+VernLbbfqVtke385vPPob/KMn/xFf6P8CuqbzUPIharLWaP1q2iY1WSMZSmK7Nn9t6K8RD8bpaOmgO9rNns49uNJV3wNFg6b2xJvFW1OsPs3QbGm5O71ZcxYkfKb7M43H6q+te7i3W+Ny292R3MHkwiSnrp5iIj9BX6yPr+z7CudbzzOeHedK4QpT+SnmSnOUqiUm85P0x/vZ3bGbR1OPLpENyprkv/38v3GlcIUPrnzAkz1P8tLel5T3vUVpak+8Gbw1xdojuT8tdZa706s4FSpOZcljK/V660MYjo0c49T0qUZrWADTNvnw6oc8tu0x/u7ev8tj2x7jrYtvMZgYRNd0uqPdODWHslPG8Bl0R7uZLc3y5vibhHwhitUimXKGmdIMl3KXODd/ju5oN0EjyI8u/YhvnfyWyhVtUZraiKskzealGZLWixOVdQK+gCf1W8RK7v4WH88DsQdYMBcaFZwAp6dP0xnpvKG/98mJk4R8If5s9M8YzYwS0AI83P4wqUiKvtY+2kPtlOwSg8lBWoOtCARCCHa17yIVSdFitJAMJZk1Z2/ZK1yxeWnqcAqoJM1mpRmS1tcnKvOVPB2hDoQQ5KzcHXX/W3w8D3c8zMmJk2ho/Hzu5wR8AdKlNC/seGHJe0zb5I3xN/i1Xb/GA60P4LgOQhMNnXjQ8EaqDSYH+d0v/i4Av/XD3+LDKx82EqHg9U7JWlkVI9+iNLUnrti8NEPSerk7va8f+DqHP3/4ju/+Fh9PXX4YD8aZXJgk6o/y/MDzjb7gdU6nT5NqSTW88rA/jCY0pkvTAFi2RcAXWHIX0BPtIejz+o7XMR3zhtcptg5N74krNifNkrS+2Z3end4NXH88qUiqMebs5SdeboRb4FOvP1381Dvf1b6LywuXma5MY7s25WqZjJVhZ9vOJTmgQwOHOD19mnPz50jKJFJIsmaWh5IPqVzRFkU1wBuKzrAAACAASURBVFLcFxb3IVkctljvnMf1eu7BxCDns+fvuEJ4JcdzfcOtetOquuFPF9P8xaW/4ErhCg+2PsiTvU/y4p4Xl5UwvjbyGu9NvodEKnXKFuBWDbCUEVfcN+6mi+Bq7bM+gWcqP0VrsJXJwiQfz3zMRGGCvmgfuzt20xPrQdf0Gy4sdSP67uS7AA0jCtzSuC53wXjr4lsNwz+WGWM4PcxAYoC9qb13dT5Um4rNiTLiii3DrYzY9d7y6+df97oM+gKEjTA/vfrTxrScvlgfHS0dPJR8iJJdYkdyR8PwvnrqVX569acIIdDQMB2TRCjBFx74ApZjNUai1Y3yjsQOUpHUsuPSnu1/lvPZ8/xs5mecz5xnb2ovO5I7lnjysHwF6XLH3gx3N4rVR7WiVWx66t7x62Ovk4qk2Jfa15At1o3Y9YqYSq1Cxa1gV20WKguU7TKGbuBKl2K1iOmYXMlfoaOlAwS8M/EOF3MXsRyLRCiBXbO5nL+MXbOZLXvDircnttPX2sesM8vIzAi60MlZOa4WrzKVn+Jq8SqudIkH43RHuzmfPc/LT7zMkfeP8GD8wRvUOseGj2HVrBUNdG4GxY9i/VFGXLHhqXug5+bO0dXSRala4o8++iM6wh0kw0mODR/jQN8B/sNP/oNX+egL0dHSwWx5ltnSLDF/jJJTwq/7kUgMzTPkuLBQXfDK4R0Tx3VIF9M4rkPUH+VK4QqOdNCERk3WWKguMDo/yn8+858J6kEc6aBrOpfzlwnpIRaqC9iuze6O3Y1GV6VqCVjaIbFOLBDjxIUTHNx+cEWG+WbbUL3ENzfKiCs2PHUPtFKroAudycIkmtAo22WSJPnjj/6Y7579LtValWK1yNXCVcZz4wwlhqjWqlwtXqUma+hCx8UlYkQAyFpZLNtCQyOgB4gEIgghcKXLleIVqm4VKSWudJFSoqNj12xyVo6arOETPgJ6gIJdoFQtEdADtIXbGr3B642u4OZqHWBZKeZyhrlZFD+K9UUZccWGpR7/PjZyjAdiDzQMuF/3e0MXbBMNjYXKAiHftenv10Imjuvw8fzH+ISvMYhBIvHpPmzXplKrIKXEp/nQhc5UcYqgGfR2LKBYLTbaBQgEEokudBzpYDkW8VCcbDnLvDnfqAAtOSUqhQo/mfwJ/Yl+ytUyJbvEb/3wtxpJ1utj5k/1PnVTw3yzRClwR4VKio2NMuKKVWW91BGLk3h9rX3kzBxFu8hcaY72cDu2a+PTfJTsErrQKTkluiJdhCohKk4FRzrU3BrJcJJkKMnV4lWCehA0sGs23S3dBH1BRjOjlOwShs+gWqs2trm430v9d1vaaDXNM+aO05i76df8VGtVBAJDMxpx8RZ/CwPJAXpjvYxlxvh47mPOzp2lxd/Ckz1PNpKa1+vLM2aGx1KPNY7f0AzeGHuDPyj9AZ/p+gwhX4hCpXBfmoop1h9VsalYNdazH8riJN7u9t2NMEhroBW7ZjNfmseu2Vi2RU3WsGwLQzMIG2E0zQuP+HW/97sRoD/ez/6e/Rx88CCGZhDyhfBpPmpujUqtguVYOK6DLnQMzQA8D3wxEolA0Bfvo0YNn+bDr/upulV0zXufX/cT9AW9knrH5PGux5kteUnQqD9Kb6yXg9sPYtW8isyb9Q86nz3vhZCcCu9MvoMmNFKRFJPFSUzH5Dce/Q1efuJlZcC3AFvGE1f62bVnpeqIm30Wd/IZ1ZN46WKas3NnmS/NM1OeoWSXaA20Eg/GSUVSzJRnMKsmhWqBj+c+JuqPUq6W0YVO0BekVC0xsTBBMpjk7NxZ2sPtDc+6WC3i1/y4uoumaQ3ViiY+9X3qoZT67wAL5gIZM0NN1oj5Y16oReog8SbQE8JyLLoj3aQiKd6++DZhI0zICJEzcytqf3v0zFF6Y738ePrHtBgthIwQUkpyVu6WAyMUm48t4Yk3Q8e8rcBK+qHc7LN48/ybd/QZ9UR7GMuMcXLiJHPlOUpOiaAvSGdLJ50tnSxUFvho5iPShTRSSEJGCKtqUawWMTSDiD9CTdYQwms4NZGf4ErhChezFwnoAT6a+4iZ8kxjlJpTczA0g4rrTawHz/O+vo2ug8O8OY9P+NDRKdpFbMem5taQQuLX/ezp3IMQohErz1k5Qr4Qlm01DPjt+sjUk5hZK0vQ8GL1pmMSD8bVwIgtxpYw4os9xMVtQFXrztVludau16sjjo8fp+bWODN9hj8996ecmT5Dza3x7dPfvqPPaDAxyA9Gf8D5zHnOzp31YuC6j75YH4VKgbARpiZrGD6DSCBCxB9B1z3vu6OlA7tmkwgmEHjJTle6+DU/2UqWsBEm7PPUI0W7iJTSe7+mA57x1tFvWFPdoAd9QWKBGEEjSFuwDQS4eAqWtlAbc+YcVadKxswwOj/KTHGG96be4+zcWTrCHcuet+up99oP6AHMqknZLlO2y+xq36UUKVuMLRFOUfrZ9WG51q7XqyOG08NcyF0gbISJB+MNvfRsaZZn+p9Zsr3Fn9Ho/CjHho/x3tR7lOwSpWqJglWgUquQr+TRNZ2+WB8BPQACMuUMjutgVSxqbg3H9Txpn+ZrzK2slqtoQkMTGhF/BL/ux67YFO0i0UCUjJkhGUriui41WWPenG+s7fp4eD2s4tf8VGoVWvwtdAW7sGt2YxDybHkWq2YREzH62vqYyk/xzsQ76JqOX/fTFm7j47mPMXQDXdNvqSqpx8pfG3mNN8beoDPSyed6P0fAF1CKlC3GlvDEV+IhKu6dlQzxyFk5NDTCRrihl9bQEIibfkaj86N86+S3+NGlHxE0gswUZxjLjlGoFqjJmicfRJC38pyd97xZy7Gwap7Gu+bWkFLiuA45K8ep6VO4rkvFqeDTfQjhGeRCtUCrv9VLgl6r3JRSkq/kyVm5JaGTGrUla60bdcd1kEiv0CiURLqSaCCK3+fnwfiDdMe6cXE9pYpu0BHp4CuPf4W/88jfoS/Wh+M6TOYnV1QqP9Q2xO/84u/wn37tP/H8wPONIiRVZr+12BKe+Eo8RMXqcLshHolggoyZwbRNgkawoR7Z2baTjJkBbvyMjo8fZ9ac9XpuG2Hy1TxhI0zWzGLbtmeoZQ1XukSDUXRNJ+aPUbSLaHgJSV14hThCiIYRdXAoV8uNwiCAkD9ETIuhCY32UDv5Sh6rZuHTfCwOf18fC5dIb194lZ5SShasBUpOiSd6nuCDKx+gC52QEcLQDCYLk7SH2huj4FKRFKlICle6DE8Pc3z8OEfPHF1R4lcNTtnabAkj3gxDee83zaLO2ZPaQ4u/hSuFKw0lxkBigIHEAIcGDnF8/Dgj6REyZoZ4MM5rI69xfPw4VwtXSYQSbItsA6Baq3oVmugYPgNZk1RrVfzCj1/z81f6/wqXcpco2d7Q4WK1iK7r1NyaZ4wFaFLDdr2LgKEbbItsw3RMtrdv5+kHnqZYLfLt09/GEF4YRiCoutVbHp+O7pXaL1ymO9bN3tRepPQ882K1iOVYVKjQF+ujLezFyxczlhljLDtGf6J/Sa+UZ/ufbXQ8vF0PFUXzsB7fO9XFcAvQTN3tbreWxc+btsmJiye4UriChoZP9yGlxHZtLi1cwqk5+HU/Qghqrlc2H9ADBI0gjusQ0L3uhJVahfnyPMlQknQ5jVPzQh6a0Fj8739X2y62x7cTDUbRhOfBvzH2BqZtYrs2fp8fgaBkl5Yck0CgCQ0hBZ2RTiKBCD7h43t/+3v89onfZsFawNANzmfPe3F3x0bXdJ7qfQop5ZIqzbfG32Jvau8NIahTV0/x2LbHllRu5qwcUX+Ul594ee0/OMUds5rfO9XFcIvTTN3tbndXtHitZ6bP0BZqI6AHOJ85j4uLX/d7PU5cF5/wUa1VMXQDDQ3HdTBrJtuMbbiuy7Q1jS509qX2YegGGTODW3MBMDSDmlvzwh/XyFgZ5q/OE/aHKVaLDCWH8OteotKtuUjXK8uvU09makJDQ0Nqkl3tu2gNtGI5FkNtQ8SDcbJWFl3T2RHfwUR+grJTpifaw+HPH24cc/1c7EjsYEdyx5JzFgvEmMhP3DLxq2g+1ut7p4z4FqDZ1Dm3iuEuXmvWypIIJQj6glScCtFAlPHsuFcWH+lmzpxDk566RCIbhr3klNCE1lCKfHD1AyJ+r6lVPR6OACkkmtQaj+WsnBdesbxE66npU4T0EDW3hiY0zJqJVbM8zxsNv8+P67rYro2LSzwQbxT5HOw/CMDe1F4i/ogXPnJy7O7YTXe0m4HEQOMcLD4XR94/smyvlL5Yn2putcFYr++dMuJbgI3U3W7xWhPBBJZtIZH0xHp4pv8ZclYO0zb5yeRPePPCm17jKik9HTaSsB5uKFEc6QCex+xKF5/ma5TGu67rJTyv6b0FolH440gvTOM4DiYmIZ834LgeRnkg9gBz5lyjdW2xWvR6hIfilO0yn+35LC/ueRH4NKn+aNejS26pBxODHHn/yA2x0psl4b+y7yuqudUGY72+dyomvgVY65j4aiRv6tsYTg8znh1veLAnLp4A4GD/QUJGiIyZoVwt8+7Uu/ws/TOsmnWDUkQgvJCLdBs6cJ/mw6f7KFfLjcfrRh68hKTQBNKVS0IshmYghCAejBPwBdCExr6ufTg1h8nCJE7Nwak5+HRfo1r0mwe/uWybgfoYuuvHsi2XF1hubN39GGenuHvWKyaujPgWYa0MwGr8Q71+G/WxZoPJQTpbOpFSUpO1xrp/889/kwvZC1xeuLysEV+MQOATPlzchhRxuXL5+msXPy6u/QfQFmqjNdSKW3NpDbXy7PZnGU4PN3qQ7+ncs+w8zuU48v4RCtWCSlJuAVbre6cSm4o10xLfKnlT/3k7D/36bQy1DdHR0rHEqNW/DEfPHOXywmWuFq96uu/rDO/1SCS2tNGFjt/nx7TNGxpW1f+u/9Su1cDVQzQBPfBpVWWkjag/ykBigLJdJmNmSAQTDYkksGyYZDHNlqNQrB3roeG/rREXQvQB/xlI4Slsf19K+e+FEEngj4B+4CLwt6SU2bVbqqIZGUmPkLNy5Co5EsEEu9p30dHSwUh6hEsLl1aka17OqJm2yYkLJxrbuZC9gKEbnrdv5clXl1Z3LmY5wy6kwLKtJaESDS/MUnErN2yjLjEEr3CnbJfZEdhB2AjzYOuDy3rMi+8obnXMGylHoWh+VlJ27wD/u5RyN/AU8A+FELuBfwG8JaUcAt669rdiCzE6P8pYdoyclSMRSjBbmuUPf/aHHD19lPcm36Pm1lbU0Or6tgjpYpoTF0/guA5j2THOzZ9jsjDJlfwVhtPDzJRm7niti413nRq1JQa8rjrRhed119sB+DSfJ1G0MvREe9iT2rPsufjtE7/NT6Z+wpnpM8yWZm96zPXmVTkrhytdclaOjJlpePIKxZ1wWyMupbwqpfzptd8LwMdAD/CrwNFrLzsK/NpaLVLRnBwfP87e1F5cXGaKM0wWvIEEF3IXuFq8yv8c/Z98NPNR4/U3a5F6vVH76fRPAa8bYMQfIV/J40oXB4dqrYoUt87jLA6XCARBPYhP89Hib8EQxrLNq+pTd3zCU7DUpDfUQUfHqTnYNZurhav82eifeROAFlH3wGdKM3RFurAci5MTJ0kX08se80p6zCgUK+WOYuJCiH7gMeA9ICWlvHrtqWm8cMty7/ka8DWABx544G7XqWhCpgpT7EjuIBaI8f1z38dyLIoVT26n+TTmy/P84JMf0B5uJxVJ3RAyWKxqCepBTNvkUu4SI9MjAGTMDEEjSM7KIaTAcT0jfqfU+387VQdDNzCkN2Oz7p1LvFazVbuKLW2ARlGQLnRv7Jqr0Rn2kqz/8af/kd5YL88NPgd8GtPvinRhOiZhIwzA2bmzBHyBZcMkqt+JYrVYcRdDIUQE+G/AP5FSLglISk/isqx7JKX8fSnlfinl/o6OjntarKK5qIdBUpEUnS2dtPhaPK22EaYj3IGUknlznncn370hZHD9cIiwP8yVwhVmS7MIzSvGsaXNgrWAK12qstool79VInMx8ib/dUe60bRP/+kb4to4Nt3XqMAM+oKE/eGGR55qSdEWbmNbdBvJYJJvn/524/3D6WFOTZ9iMj/J2bmzzJZmCfgCTBenVZhEseasyIgLIQw8A35MSvnfrz2cFkJsu/b8NuDOA5WKDc3iMEgsGONq8Sq60EmGkgSNIO3hdiJGhLNzZ28IGSw3qGOmNMO5zDn6W/spVUuE9FCjv0ld+319KOROCGgBcL07iJAewq/5G8lNIQXVWhUNr7d4LBAD+ekwh7DP68HSFekiHoozmZ8EvIvReHacBXOB3lgvPdEeJvITXMheoLOlU4VJFGvOStQpAngV+FhK+X8teur7wN8H/s21n/9jTVaoaFoW90FJBBIgIBqIEvAFvOnuQvBw+8MYunGDmmM5RYrlWJQqJTo7Oon4I5TtMqZjNqosA74AWk1DCIFZM+9orbrQcaQ36LjqVvFJH4ZmkAwlvTCQXQQBOxM78ek+5sw5QkYIu2Y3jqsr0uUNiyhniAViHHn/CN8/931c6WI6JiEjRGek0+vLIms3FP0oFGvBSmLiB4C/B4wIIU5fe+z/wDPefyyE+CpwCfhba7NERTOzOLbr03z8+difk6/kiQaidEQ7qLpVnu59+ob31WdkXilcIWd5LWntmk1LoIWZ0gxlu0zOynkJSaMFXeheaONaJ8M7QUdvlNXbro1f87OzbSeWY5Gr5GgPt6NpGjEjxkJ1wRsKoRkEfUEMzYuft4XaaPG3kClnuFK8wkPJhyhUCwghiPqjWGWLrJllZn7GG8MWbluV86tQ3I7bGnEp5f/HDV2PGzy7ustRbGT+8ZP/mEqtwkxphopTIeALsL1le6OPyGIGE4McPXOUZDBJPBQna2aZzE9iuzYXsheouTUqToUKlUbZvKEb+DU/kWAEM2cuKxtcjvrAhnqPlbAvzGR+kqAvSDwQR9d04oE4vbFePpr9iKyVBQlCCFLhFH2tfZi2ySfznxDwBWgPt/Ng/MFGf5e6Fz6Vn2JX+67GulS/b8V6oCo2m5RmGeJwJwy1DXH484dXVGZ8PnueLzzwhYYnrgud1mArC9YC7aF2JvITCCEI+oKNopuAL4ArXTrDnWhoXMxdvK0hr0/bEXjNrXS8/YSMEIVqgXQpTYvRwhf7v0hvay8lu4RP8+G4Dj7NR2+sl13tuxhOD/O1/V8jFojxxx/9MSMzI1RrVfJWnp/P/ZyKU8HQDCQS0zY50HeAgC9wX9r9KrYWyog3ISut/FuPddzphWSl0rm6PLH+2rcvvo3P52PenKc93I4tbWpuDb/up1qrehN5gIG418I11ZJiMj+J63r68evx4Wv0H/frflr9rcxb82yPb2cgMcB0aZqaW6Pm1gjoAUYzowgEF3IXAGgxWki1pKjJmtfoynWIB+Oki2kKFc/4n5k+wyOdj7C7fTfvXnkXq2Zh12wO9B1ojFrb6KX0G9GZ2GpsiUHJG43llBs3q3ZcK66XABaqBV499Sqj86Orsu2xzBi/9/7v8a//4l/zr97+V/zw4g+ZKcyQCCbIV/MkggmklJiOiS50NOE1r4qHvFJ1n+5Nrdd1/Ybta2ikIik6Qh0NdUssGOOz3Z+lt7UXn+4jFU41EpY90R4c1+G7575Lza1haAZVt8rZ+bNoQmOmOEOqJUW6mObkxEmSoSRVp0q1VmWqMEWlVqEz3Mnujt3EAjFSEa9kYqOX0q/lvwHF6qE88SakGRokrdVUkrphcFyHC7kLDeNcdap8aH7I031PU7a9drGJYIJCtQASAnqA7fHtCASZcoZ0KU2lVsGpORiaget6zar8mp+gEWSmNEPICLEvtY9UJEXGymDXbAaiA1iOxSdzn9BitNDR0kFHuIO8lfeGIeMVB+nCuziYjolP89ET6+Hs3FnCRrjxvytdXNcla2V5buA5Pp77mOniNK50b9nve6N4t800EUpxc5Qn3oRc30sE1t+rmypMeVrpRdysbP5OqBuGi7mLxINxzxBKl4AvQEAPMJweZigxxExpprGG5wef5/kdz/PC4AsMJgcRQjBTnCHijxA2woR8IYTwepzU4+ixYIy+1j4c6RD2h2kLtREyQkzmJ3m061GS4SRSSsYyY+QrXkOt3e270YVOZ7iToC9IV0sXfs3P4c8dRtd0povTBH1eZakmNEJGCJ/mI2flGttZsBYYnh6+aSn9RvJu1+rfgGJ1UZ54E3Kz6S7rOcVlrTrt1e8yslYWIQSxYMzTbteqtIfauZy/zMjsCI+mHiWgBzAdk8n8JIc/d5j+RD/Hx48znh0n7A9jaAaxYMybyIPE0AzPK5cuhm4Q9oXJmBk+mf+Esl1GSsm+1D7K1TKT+UnCvjC/0PEL+HQfs+VZJJJHux5tzLKs9/h+bvA5+hP9XMpdIl1MEzbCJEIJFioL2K5NvpLno7mP6I508/T2p9E1fcVtd5vZu1XdFjcGyog3IbcbJrwerNWFpG4YEsEEl3KXCPvDVJwK1VqV6dI0GhqdLZ38+i/8euM9OSvHyYmTfOfj7zBTmuGT+U+oOBUKdoFUOEXRLjYuBCFfCKtmkQwkyVpZclYOy7G8akyhcSl/iaG2If7Gw3+DkZkRDN3wqktD7UwsTPBkz5PLhkOG2ob45sFv8uqpVzk3d454ME6xWuRK4QoBLUBAC2BoBlcKV5guTjOSHuGJ7idwpLMkZNIMobKV0gzOhOL2qMk+ihuox2xH0iPesOJggj2pPasSu62HE+ZKc3z37HeRSKpOlYAeQGgCv+anNdTKi4+82EgQutLlD0f+ECEEbaE2LucvkzNzTBWmiPgjdLV0MV2aplgt0h3tpi/aR8kucW7+HLqmE/QFqbk1r6dLSwdBX5AX97zIbGmWs3NnyVk5WgOtCARPP/j0LeWRo/OjfPX7X2UyP0lroJVitUgkECFv5bFrNvt79lN1qozMjLA9sX3JWLn6hbk+1SddTHN27izTxellx7o1A2okXHOgJvsoVpxMWyxv3Nu1t+F9rdaXd/FdRrqU5u1Lb6NpGpFAhL5YH9PFaUqVEkc+OEIylGR7fDu72ncxV55jZ9tOQkaI7kg3ZbtMe6jdm7kZ8H5/5sFnyFfy7EjsIBVJMX1qGsu2AEhFUmyPb0cXOufmzzUad9UvFDcbj7bceeuJ9hAxIhi6wZn0Ga4WrmLa3kDlsBHmQu4CyVCSZCjJJ/OfNMIzx8ePN7zb2dIsIzMjjd4tvbHepiwOUt0Wmx9lxLcAd6I7X4+Ybd0wvPzEy7z8g5fJVXLkrTya0MiaWebNeXSh4xM+Ppr9iIn8BCFfqNFHPBqIMpgY5OLCRRDwRPcTJENJHul8hMHEIOez55kqeH26d7btbBhq8CbWt4XbyJgZ4NZhgpudNyTkq3lmSjOEfWHKdhnbtRGOYKY0Q97Ks7tjNyFfiJyVa+xnKj/VuIj99onfxq7ZdEW62NW+i1QkRc7KNWVsXNHcKCO+BbgTw7yaMduVeP+plhSjmVGmC9PMW/OeptvvJStrskbAF8C0TWpujfxMnu3x7bSH29E1nUQwwZd3fplvHPwGo/OjHBs+xh8M/wGplhT7uvaxLbKNc/Pn0IRGe7gd0zHJmlm+2P9FXtr7EseGj3HiwgkAnup9asXn7VLukteq1ghTc2t0RbqYKc7guA5ZM8vujt34dT+mYzbeszghONQ2xI7kDp7pfwZNfCoQa9bYuKK5URLDLcCdSMVWS964Eindm+ff5E8/+VN+MvUT5s15KnaFBWuBhcoCO5I7GEgMNIxcT6yHeCDOeG6cyfwkEslDyYd4ae9LjX2dmTlDKpJCExrvTL7DI52PNOLlWSu75D0AVs3i4PaD/OquXyVkhG5Y383OWzKUpGyXGYgPsLdrL0NJ787iwfiDnlzRyjOSHmEqP8VDbQ8tO36tGWSkis2BMuJbgOVmWL5+/nU+uPIBR94/ssRwrdb8x2PDxzg3f463L77Njy/9mIpTWVJ1Ojo/yivvvEKlVqE32otP81F1q435lsVqkeniNAJB2AjTG+vlSzu/xCMdjxA2wjw/8DxfP/B1htqGGh5z1akS9oUJGSFajBZmy7P88kO/TE+kh89s+8wN76m5Nc5Mn+H7577Pmekz1NzakqrYmxnaRzof4YUdLyCR5MwcQV+Qx7c9ji68JGpLoIUH4w9iaAbpYnqJZnx0fpQj7x9hOD3MW+NvMTo/quZsKu4JFU7ZAiyWipm2yYmLXgjhYP/BhodcNzKrIW8cnR/ljfE3SEVSxINxTMfk5MRJPtf7OQqVAuCFKmzXG4UWDUSJBqNE/VFmyl5YIl1MYzompm0S8HnyPYB9XftwXGdJArIeAqrvK2yEvbFuZo6QEeJLO790Q8JyJD3CWHaMiD9CIpTAsi2G08OU7fKS8/atk99i1pxlvjzPgrVA1akykBwg5o9RtsvsTe1lR3IHr4+9Ttgf5kvbv3TTZOniGPujXY8S8UcYTg9zpXAFV7rEg/HGReR+xMU3SiWpYinKiG8BFhvmH134EYlQgse7Hl+S8FscH79XRcLx8eOkWlLetHghGjMnT6dP8/zA84BneLtaushaWapuFb/uJxKIYNUsXNelaBeRrlfAkwgmKNpF5spzTBWm+MUHf3HJ/uoe8672XZycOOk9KMGv+8mYGR5LPcaR948sMU5ZK4sudEJGCICQEcK0zUbCs44QgmKlyOTCJJqmYTkWhUqBmqzRG+ttGH7LtjjYf3DJOb0+xn19jL1+jofTwzw78GwjyXq/mp01Q9M1xZ2jjPgm53rvqj/ez96uvWuaUJsqTLGvax/vTL4D8P+3d66xbV7nHf8dXkRSIiVTN1pXy5IV26nlW7LWsevEiRx73VK3GIY0a4cO9bAURbF1A5ytA9IWqFFgQ/th+xSgaLIUaNwtzVo3KNLUtRJ7SZqkSXyR6otiyZItyyJlCvNPaAAAF8dJREFUS9SNIimSOvtAvW9JiZQoihdRPj8giC2Rfp/zUnrec/7PDavZChKGfcO6XFDnqCMYDjIwMYDH54EiCIVDGA1G6hx17Knfw9W7V+ke6cZeZEciuTl+k8hshI7+DlwfuPSdonbSKLeV81D9Q1zwXGDYN8yhlkPsrd9LR38HkdloN8J3B97l5NWTmES0y+F0aJpQOMTA5ACTwUnqSuu4NnJNl1xayluYmpmi1FLKtdFrTIem6fH24CpxYTaYaW9ux1HkYFv1tmiflxjma9yJgsaxHRIhfxWchVRJqohHaeJrmETBxV5vLx8OfsjZ/rOcvHqSs/1n6R3tzUhATdN7P7r9ERfcF9hSsQWrKSprSCSHWg7pDuFg80GMBiN76vdQa6/l9sRtBicHqbXX0ljWSEt5C7Nyli0VWzAbzPhmfNyZvsOGdRtwFDniAqXaScNR5CA8G+ZQ8yFe/PyLfOfAd+jx9hCZjdA13EUwHJ2RaRRG+sb7qHPUEQqHuHz3MgJBs7OZCluF/u9qgU1vwMtMZIahySH94SeRXL5zmVvjt3i1+9WUNO5EGrvWITGWfPQnUX1SChe1E1/DJNpd1ZfW09HXwdbKrfpEnV5vry5zpEvscXxP/R7e7H8Tb8AbV7EYO+FHc7wnuk4Qmg2xt3EvO107sZltdFzvoHe0V9e4WytauTR8iZKiEhwWBzaTbcFOMZEEdG3kGq92v8rNiZuYDWYaSxsRZoGz2Ik3EJ0kNCtn9XL5gYkBtldv1wOcsS0CLt+5rA+oKDIWIYSgyFjE672v84mqT8Rr3BO3mSXahTFW405Uxq51SIxF28HnUqNWfVIKF7UTTxFtl/nsG88uyOhYjWgO7Ez/Gc72n8Uz5QGigU1XiSvawCkwjtPmZH/jfnq8PSu63vwe6A6zg6HJIV6+9DL+kD+ptnr17lUsJgvFpmK9d/p213Y6PZ3UOqKVmaPTo/rEn+nQNFsqtwCL7xS1h4rVZCUcCSMQ9Hp7mQhMEAgFqLBVMDo9ynu33ovKNDKCSZi46LnIz6/8nLdvvq1n6tQ6ahkPjGMxWQhEovM3g+EgUkqC4SC7a3ZjEAZaK1rZ7trOXf9ddtXsYvv67QtODO1N7ZwfOs9POn/C+aHzPPWJpzAajAuygTY5N+W022GmspIUuUftxFOg0II+sQ5MIPTskH0N+3D73Gws36iXggMZmUCj6b3a4IRiczEP1D6gZ5nMt++lzpc4df0UI9MjtJa3EggHdBtbylvwzfhodjbjm/HhDXipL6vHbrHHBWST7RSvjVzj229+O1pROVeQE5oNUWQqYmBiAHuRnZnIDDOzM5RZyvCH/QTCAUotpRQbi5mameKc+xyAHhCuL6tnPDhOuaUcKSTF5mLcU27aqtvigpmLadwAHf0d7KrZxSNN0RYB3aPdtDe1R6tMY7KBcq1Rr4ama4r0UE48BQot6KPZu7tmN+8MvEOJuQSb2cY59znMBjP1jvjgWiaOzdr0+jP9Z5gMTlJmLaPMWsZ6+3o9P1zLk37+/PN0j3TjsruiA4hHP2Zr5VZKzCX6zrzN1RaXFqi9T5uz2TvaS6enkxZnC8998Jy+Y5z/cDAbo9kt3oCXUCREIBSI9joJ+ykyFSFnJb6QDymjOd9l1jJm5SxlRWWcvn6ar/3J1xYETzUppON6B1urtsbdh2Qa9+DEoJ47PxOeYZ11HVsqt1BuK6fH28PB5oO6dHKi6wSnr5/GXmSn3Faul+Vnu6JT9UkpTJQTT4FCah8Kf7TXYDWwr2EfV+9exev3AnDsoWN09HcwFhhLq71oMp1Wm17v9Xtx2pz4QtFA5P2V98fdq9jCnHXWdTSUNtA90s3N8ZtsrdqKe8qNfdROjb2GZ994Nu4a2k6x091Jr7dXz9GeCE7w/Xe+z0Rwgit3rxAIB/CFfFy6c4ntru00rGtgfWQ9I9MjXPJdwiyi+rjb52YsOIYRIyZjdDjyVGiKKmsVG8s3xkk1sRr+mb4zevXnRHCCscAY/pCfC+4L+rQiz5Qn7sRgMpj4Te9vEubO93v7uTF+g3JbOWaDmTf738Tj80Tlm5gTisVkURq1YgHKiadAoQV9Yu3VOvXNH3CQzrF5MVlJm14fuxOvddRyZ/oOtcFa/V7NL8wptZZyX8V99Hn78Ex5sJqsSCkpLipOmDfdWtHKcx88R5OzKe5k1DfWx42xGxgMBsqsZfokno9HPmZXzS7GA+N4g152uHZE+5fP5aabhZmwDGM0RCtFjcKIMAjqHfUJP19/2M+BjQcotZTSO9rL+YHznBs6x6h/lI3OjTzR+gSdw5109HXEBXWtRmvS3Hmr0aqv56L7IhW2CixGCwMTA1GJx1TMuaFzbK7crHp5KxagApspUGhBn6Xs1ToIHn/suC4XpMJiA5y16fVHNh+hydlEXWkdlcWVuKfccdeOLcyZDk3rhTJGg1HXzsusZQTDQd668RZn+s/QfbebE10ndDti0+E8Ux7O9p/lvPs8Y4GxaMl+cEofoXZ78jZ9o31Ul1RTbIqW76+3r2cmMkNYhnHanBiFkdBsNEd9vX091SXV+nSeZOvXWsmWWkqRUrK5YjMmg4mqkiraN7bjtDl5/9b7esl9WIbZuX4nvpAPf8iPREZz56eiw6G19XgD3uiQiuJKqour9SEXgXBg1cZgFPlFOfEUiM1DHpwYTDo/cbWQLXsXyyXWnLPL7mJfwz5sJhueKQ/VJdVx19YeMBaThYfqH2IiOMHlkctUl1RzuOUw/rCfd2+9y6neUwTCAZw2JwLBqd5TemaGdi0tiOoP+zEKI0aDkXH/OENTQwQjQaxGK2aDGSkkR3cejTaj8o/prWxtRhvBSBCX3cVXd3+Vwy2HcdldlNvKsZls/Pjij+MykWLX//vB3+OZ8nBz4iY3xm9gNBgpNhdz9e5VXHYXh1sO80DtA/pDss5Rh81sY1/DvgW5822uNj1/3GmNtgDwh/3UldbxSNMjHGg6wJHNR1btz5sivyg5JUUKLeiTDXsXk5Vic6CrSqqwmCw0+BviGj9pO3abycb0zDQRGaGquIpd23bpttbYa7jovojZaGbDug3RiwiotlfrwVHtWt0j3djMNgQiWugjw8yEZygyFGE0GJmemabWXqunUB7deZRvnfkWAOts62gsa6TH28PjzY+zpWoLtcFa7KN2pJTYzDZcFlecnKOtPxgOcvnOZRwWB2aDGYvJQvdIN1sqtjAWHou7LxqxgdH9G/brsQgtd167d/dV3BfX20Y7RSkZRZEMtRNXpEysTDM0OcSve37NyasnGfYNAyTd/c+vHLWZoxLBl3d8mZbyFlrKW/Rr6DJLODrYWJNcdrp26oFG7aQRCAUIhoJYTVaeuO8JGkobiMgIESJU2iq5v+p+ntz2JC3lLdyevM3jmx7n+IHjlFnLGBgfoK60ju89+j0eqH1At7nGXsOmik0JJSNt/efc5zAbzQxPDXNr4hYl5hJmIjNcH7tOqbU0ody22OlofsXpo02PcmDDAcKz4VV/6lPkHzVjM0UKrcNbtuyNzfHWhi/EzpBMdI3nPnhOnysJUR37nPscgVBAryKNfd/PLv2M4elh6h31eiqexWRZMD4t0b/7yuVXCIQDPFj7oF4UpF3ryOYji46lO339NC91vURjaSNbq7bGzfgcnBjk+GPHuTZyjaO/PEqft4/QbIgKWwWzcjbafTESZsf6HbRvbOdL27+0qn8+FIWFmrG5Qgq12Ccb9rZWtOKyu/j8ls/HySoAJ7pOUF1SveDBEZuiqenYmgxSX1rPWzffAtDTBZudzWxct5FNFZsWTYOcX8ZuMVn4VN2nEELQUt6yZNvdRPeroayBMf+YntbnsrsWTOWpL63HUeTAZDDRN9bH8NQwZoOZmpIaPrv5sws6ISoU2UTJKSmwWFbGaiTb9iYKcPpDfk71nkpYJh4biHy1+1X6vH30e/sxGoy0VrSyv3E/tyZu6TLDsb3HeGbfM0sGZhNJFM/se4Zje4/hKHLw3q33cFqdtG9sp8ZRk/Q+xN6v+yvvZ5ZZDBi4cudKQmnEaXUSkRHMRjNWs5Uaew2VxZVU2atW/c+GYu2hduIpUKjFPrFk0t5EAc4L7gtU26sTVrUebD7ID373A7pHupkMTmIz2/CFfIwFxvBMeWgpb8FqsnL8seNx10nl1JAsgBt7Aliq7W7s/dKyay7fvczA+AD7N+xfkEff5mqjpKiE25O38U57ow8A2zqqiquSXkOhyBbKiadAIRf7aGTS3kTd+Dw+D4dbDse9LnbCe429huHpYe767iIQbK3cislg0svs05nhuZTmn+p9qHPU8eHgh1z0XMQb8OK0Otnh2sEX2764YCJQ7Pp3rN/BLLOM+8eZZVbX4LUKzfmDKFaj9KYofJSckgJrrdhnpSSSMQ41H9Kn5GjEOsywDHO45TBf2PYFXHYXRoMRi8myoBgoFVIZwgyp3wer0cprPa/pbWcnghO81vMaVqN1yfU7LVFppa26jaqSKsYCY/SO9jI4MZizDoSKexu1E0+BfHZ4SyfLJJf2SqLZTfsa9tHR3wGQMBg5vxjo6t2ruKfcC4qBlkLrUOjxeaix1+jNoWBhQ7JU78Op66fY5NxEIBLAH/JTZi3DVeLi1PVTfGX3VxLaESvj6J/R3DVq7DUUFxVnvWFaoWVMKbKDSjFcxcRmTcQ6xqWcXrZ/uZPZpbVUvT15Wy8AinV06awl0XXP9p8lHAkzGZrEKIx6sY6WBrhcPv3Cp2ksa8Q348M95cYX8mEz2pBC8uHTy/95ffaNZxdo8bFpipkgE/dTUTisKMVQCPEC8AQwLKXcNve1cuB/gCagH3hSSunNlMGKKOm0wM1FOmQyu3q8PQk1ZMjM6eD09dNEZiOMB8cxCiNl1jJ8Mz5+e/23mI1mmp3Naa2nobSBWxO3GPGPYDFaKCkqYcw/hsFg0Ic5LIdcxFAKrT2yInukoom/CPzpvK99E+iQUrYCHXN/V2SYdOYepppeuJJJRenOY0y38VbsdQcnBql31DMrZ5mJzFBsKiYYCdLp6Uxb8z+68ygD4wOEI2FMwoRvxhcdGVe/N61UwVzEUNRMTIXGkjtxKeX/CSGa5n35c8CBuT//GDgD/EsG7VKQ3o4ulfTCle7W85WtU+eo43cDv6PGUYPVZMXtc+t2tDhb0t6BPr7pcfbU7eGa9xqjgVE9t3xr1dYFqYKJpCpgwdeyHZMotIwpRfZIN7DpklIOzf3ZDbiSvVAI8TTwNEBjY2Oal7s3SZTKt1QzpFR+uVd6FE/HrkxwsPkgJ6+exDsdHTxhMpqYDk3TVt2WtpSi8XDTw+yq3RV338YCY3H3LdHD7/vvfF+vEJ3/QEwmLWWCfH0GitXHilMMZTQymjQ6KqX8oZTyQSnlg1VVVSu93D1FOi1lUznKr/Qonq/WvK0VrRx76BgRGcE95Y6OcatuS9j7e7mkct8SSVV3/HcY9g3nvJq30NojK7JHujtxjxCiRko5JISoAYYzadRaIRNZIsttKZtKADETR/F8teaNnUyULAsmnXueyn1LJFUFw8EFW5hcVWwWWntkRXZI14m/CvwN8G9z//9lxixaI+SzadZSv9yFfhRPtr7l3vNEDn8xCSTRw89isixw4kqbVuSSVFIMf0o0iFkphLgFfIeo835ZCPG3wA3gyWwaWYis5hSwTBYDLWfnm84uean3aN/v9HTyweAHeqrhYkVA2vuW+5BN9PCrslUhhEh78HS661YoNFSxT5bIRcFHpkjXYSyn4CSd4pSl3qN9PzIboWu4i57RHoqMRTSUNiCEYF/DPqpKqhLe8/m9yAF9mPRiu3HtXsVKOUBSeScdVCGPYj6qn3geKJQUsJXIPss5baRzMlnqPdr3L7ovUmwupsJWoXdHrCutW7S5VrqdHhfrmpgpVvMpTrH6UA2wskShNM1aSe/x5WS5pJMRs9R7tO+PBcawmWyst69HSsl4cDyaR75Icy3tIRvLannIqkIexXJQO/Eskc+mWYsxXzrp8nSxff32uNekml2xnNNGOieTpd4T+31/2I/D4qCutA6v34tnyrNoc63VGty9NnKN3tHeaFFTTIOv1fKAUaw+lBPPIqstBSyRdNLr7aWkqCTOzsUcRuxDwCRMDE0N0VLesqQjTMdpLvUe7fu1jlq6hrsIhAIIBAeaDmA0GBeVhJb7kE0WN8hkAFL7fOpL6/EGvHj9Xt6++TbbXdsxGox5f8AoVicqsJlncpmFkCiYd23kGp2eTtqb29MKTvaM9FBXWkd4Nkyto5ZNzk30eHsSridRUDDV7JRk79G+3+XpwhuITtnZVr0to/dxsa6NHf0dGQtAxn4+nilPXLve7z763VW1IVDkFhXYXKXkOpc8UTCvpbwF34xPr/xbbEeaKOC2qWKTntGx1HrSOZks9Z5cnHaSBRpfuPACu2p2ZSwAOX9MnMvu0jOalANXJEM58TyS6yyEZBpzm6stpT4fS2V0rNWsimTrHpgY4JGmRxZ8Pd1qzULJaFKsLlR2Sh7JdRbCSjNmlsroyOV6VtJKd7kkW3dDaUNGM1wKJaNJsbpQTjyP5DrNbaVNk5ZyMrlaT6ozNjNFsnUf3Xk0o05XNbVSpIMKbOaRQqzMWyzQmKv1pFttuRKSrTudYK1CsVwWC2wqJ55n1poTyMV6UmlpoHqPKNYSKjtlFbPacslXSi7Ws1QAMJ8dJBWKXKM0cUXBsZQ2v5JWAgpFoaF24oqssJLOiEu9b6lqy3SbWykUhYhy4oqMk66csZz3LSbbqHxrxb2EklMUGSddOSNTMojKt1bcSygnrsg46Rb9ZKpYSOVbK+4llJyiyDjpyhmZlEHWWtaPQpEMtRNXZJx05QwlgygUy0c5cUXGSVfOUDKIQrF8lJyiyArpyhlKBlEolofaiSsUCkUBo5y4QqFQFDDKiSsUCkUBo5y4QqFQFDDKiSsUCkUBk9N+4kKIO8CNnF0wPSqBu/k2Igeoda497pW13ovr3CClrEr0opw68UJACPFhsubrawm1zrXHvbJWtc54lJyiUCgUBYxy4gqFQlHAKCe+kB/m24Acoda59rhX1qrWGYPSxBUKhaKAUTtxhUKhKGCUE1coFIoCRjnxGIQQRiHEeSHEr/JtSzYRQvQLIbqEEBeEEB/m255sIYRYJ4R4RQhxVQhxRQjxUL5tyjRCiM1zn6P234QQ4h/zbVc2EEL8kxDikhDiD0KInwohrPm2KVsIIb4xt85LS32eqhVtPN8ArgClS71wDfColHKtF0z8J/C6lPIvhRBFQHG+Dco0UspuYCdENyHAIPCLvBqVBYQQdcA/APdLKf1CiJeBp4AX82pYFhBCbAP+DvgkMAO8LoT4lZSyJ9Hr1U58DiFEPfDnwI/ybYti5QghyoCHgecBpJQzUsqx/FqVddqBXinlaq+KThcTYBNCmIg+kJc3fLVw2Aq8L6WcllKGgbPAXyR7sXLif+Q/gH8GZvNtSA6QwCkhxEdCiKfzbUyW2AjcAf5rTiL7kRCiJN9GZZmngJ/m24hsIKUcBH4A3ASGgHEp5an8WpU1/gDsF0JUCCGKgT8DGpK9WDlxQAjxBDAspfwo37bkiE9LKXcDnwG+LoR4ON8GZQETsBt4Tkq5C/AB38yvSdljTi46Avws37ZkAyGEE/gc0YdzLVAihPjr/FqVHaSUV4B/B04BrwMXgEiy1ysnHmUfcEQI0Q/8N/CYEOIn+TUpe8ztapBSDhPVTz+ZX4uywi3glpTy/bm/v0LUqa9VPgOck1J68m1IljgI9Ekp70gpQ8DPgb15tilrSCmfl1I+IKV8GPACHyd7rXLigJTyX6WU9VLKJqJH0jeklGvyKS+EKBFCOLQ/A4eIHt/WFFJKNzAghNg896V24HIeTco2f8UalVLmuAnsEUIUCyEE0c/zSp5tyhpCiOq5/zcS1cNPJHutyk6593ABv4j+HmACTkgpX8+vSVnj74GX5qSG68BX8mxPVph7GD8OfDXftmQLKeX7QohXgHNAGDjP2i6//18hRAUQAr6+WFBeld0rFApFAaPkFIVCoShglBNXKBSKAkY5cYVCoShglBNXKBSKAkY5cYVCoShglBNXKBSKAkY5cYVCoShg/h9K4y0n8PtRwAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" } } ] }, { "cell_type": "code", "source": [ "X = df[[\"ones\",\"rm\"]].values\n", "Y = np.reshape(df[\"mean_\"].values,(len(X),1))\n", "X = np.matrix(X)" ], "metadata": { "id": "NEfF1XGUQkSR" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "theta = ((X.T@X).I)@X.T@Y\n", "theta" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "09a6ede0-9677-4184-d332-477e8790506c", "id": "vQLs5x-NQkSS" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "matrix([[-34.67062078],\n", " [ 9.10210898]])" ] }, "metadata": {}, "execution_count": 678 } ] }, { "cell_type": "code", "source": [ "theta = np.array(theta).flatten()\n", "x = np.linspace(4, 10, 100)\n", "plt.figure()\n", "plt.plot(df.rm, df.mean_,\"go\", alpha=0.4)\n", "plt.plot(x,theta[0]+theta[1]*x, \"b-\")\n", "plt.ylabel(\"Mean\")\n", "plt.xlabel(\"RM\")" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 296 }, "outputId": "024d0ffe-56d7-4040-9e94-8c2d33dc54e1", "id": "EbikbngbQkSS" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "Text(0.5, 0, 'RM')" ] }, "metadata": {}, "execution_count": 679 }, { "output_type": "display_data", "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydeXxcdbn/3985Z/Yl+56WdA+FthTLWqEgpaiggCBeQFFA+Qku1wW3K1wF9P4UcLmiPxSpAgICXi9QBbSmgGCBLnSldEmbtjRLJ9tMZjL7mfP9/XGSISltmraZpGm/777ySnIy8z3PnNf0Oc88z/P9PEJKiUKhUCiOH2xjbYBCoVAoRhfl+BUKheI4Qzl+hUKhOM5Qjl+hUCiOM5TjVygUiuMMfawNGA6lpaWyrq5urM1QKBSKccWbb77ZKaUs2/f4uHD8dXV1rF69eqzNUCgUinGFEGL3/o6rVI9CoVAcZyjHr1AoFMcZyvErFArFcYZy/AqFQnGcoRy/QqFQHGcox69QKBTHGcrxKxQKxXGGcvwKhUJxFNLcDF/5CmQyI7+2cvwKhUJxlPHHP8KsWfDgg7Bhw8ivrxy/QqFQHCWEQnDNNdZXfT2sWwfve9/In0c5foVCoTgKWLYMZs+Gp56Cu+6CV1+FqVPzcy7l+BUKhWIMSSbha1+DhQvB64U33oDbbgM9j0pq40KkTaFQKI5F1q2Da6+Ft9+GL3wB7r4bPJ78n1dF/AqFQjHKZLPw4x/D6adbef2//Q1++cvRcfqgIn6FQqEYVXbtguuus3L4V14Jv/41lJSMrg0q4lcoFIpRQEp46CGrgLt+PTzyiFXIHW2nD8rxKxQKRd7p7IQrroDrr4dTT7V68z/1KRBibOxRjl+hUCjyyPPPW5uxnnsO7rnHats84YSxtUk5foVCocgDsRjccgtcfDGUlsKqVXDrraBpY22ZcvwKhUIx4qxcaaV0fv1rq0d/1Sort3+0oBy/QqFQjBCZDNxxB5x9NiQSVlrnJz8Bl2usLRuMaudUKBSKEWDbNqtgu3IlfPKTcN99UFg41lbtHxXxKxQKxREgpZXSmTsXGhvhySfhD384ep0+qIhfoVAoDpu9e+HGG63OnQsvhN//Hmpqxtqqg6MifoVCoTgMnn4aTj4ZXnwRfvELS3ZhPDh9UI5foVAoDolIBG64AT72Masff80a+NKXwDaOvOk4MlWhUCjGln/9C+bMgYcfhu9+F15/HU48caytOnSU41coFIqDkE7Dd74D555rbcD617/gBz8Ah2OsLTs88lrcFULsAqJAFjCklPOEEMXAk0AdsAu4SkoZyqcdxzuNXY00NDXQEm2hxl/DwskLmVYybazNeg8jYWe+XuuRrJvP63+kdj224TFWtKygN91LwBmgwFFAT7qHaCqK1+HljJozmD9hPttD2w/pHPvaNbVo6iGvMXCtxzc+zhvNbwBwRs0ZXDv72lF7D2/aZLVnrlsHn/0s/Oxn4PONyqnzhpBS5m9xy/HPk1J2Djh2N9AtpfyREOLbQJGU8ltDrTNv3jy5evXqvNl5LNPY1cjitYspdhcTcAaIpCJ0J7q5ce6NR5XzHwk78/Vaj2TdfF7/I7XrnuX3sK17G7pN552ed4in4xjSQLfpuHU3dYV1RFIRkkaSRVMWMaV4yrDOsa9dO7p38Oo7r3LOxHOGvcbAte597V62dm2l2FWMFJJQIsT04ul8Y/438voeNk2raPvtb0MgYA0+/+hH83a6vCCEeFNKOW/f42OR6rkUeLjv54eBy8bAhuOGhqYGit3FFLoKsQkbha5Cit3FNDQ1jLVpgxgJO/P1Wo9k3Xxe/yO1qyPRQbG7mEgqgtfhRdgEiUwCIQQ+p49IKkI6m8YwDVqjrcM+x752tUZbKXYVH9IaA9dqj7VT4i7B4/DgtXspdhfTkejI63u4uRkWLYKvftX6/tZb48/pD0W+Hb8Elgoh3hRC3NR3rEJK2db3816gYn9PFELcJIRYLYRY3dHRkWczj11aoi0EnIFBxwLOAK3R1jGyaP+MhJ35eq1Hsm4+r/+R2pUyUrh1N4lMArvNTtbM5r4cNgfxTJxMNgMCwsnwsM+xr12hZIhCd+EhrTFwraSRxGV/V/PArbtJGam8vYefeMJS03zjDfjtb+HZZ6G8PC+nGjPy7fjfL6U8FfgQ8AUhxLkD/yitPNN+c01SygeklPOklPPKysrybOaxS42/hkgqMuhYJBWh2l89Rhbtn5GwM1+v9UjWzef1P1K7nLqThJHAbXeTMTNoNi33lTbTeOwe7JodJBS63t2GerBz7GtXkauIcCJ8SGsMXMulu0hmkrljCSOBU3eO+Hs4FLLm3159NdTXv5vTHyvN/HySV8cvpWzp+94OPA2cDgSFEFUAfd/b82nD8c7CyQvpTnQTToYxpUk4GaY70c3CyQvH2rRBjISd+XqtR7JuPq//kdpV5i6jO9FNwBkglo4hTYnb7kZKSW/KKvY6NAe6TafaXz3sc+xrV7W/mu5kNy7dxUu7XuLJt55kWdMyphZNHZad5d5yuhJdxNNxYpkY3YluytxlI/oeXrbMUs986im46y5rLOLUg5s3bslbcVcI4QVsUspo38//AO4ELgC6BhR3i6WU3xxqLVXcPTL6Oyxao61U+6uP+q6eI7EzX6/1SNbN5/U/Urse2/AYy3Yuoy1qZV+LXEX4HD6yZPHaB3f1DOcc/fZsCG4gnAxT7C7m5PKTcWkuntj0BIZpUOGtoCZQg2bThl3gfXzj46xoXoFEjmhXTzIJ//EfVqfOjBnw6KMw7z2l0PHLgYq7+XT8k7GifLDaRh+XUv5QCFECPAVMBHZjtXN2D7WWcvwKRX4Yya6jodZqaGogmo4OSveEk2H8Dj83n3bzSL+sYbFunZXaeftt+MIX4O67weMZE1PyxoEcf976+KWUTcCc/Rzvwor6FQrFGDOwAwfezeU3NDUcsuMfaq2WaAu1gdpBjw84A7REWo70JRwy2Szcey/cfrs1GeuFF+CDHxx1M8YUtXNXoTiOGcmuo6HWOlqaDHbtgvPPt3rzP/pR2Ljx+HP6oBy/QnFcM5IOeai1xrrJQEp46CGrgLt+PTzyCPzpT1BSMiqnP+pQjl+hOI4ZSYc81FrTSqZx49wb8Tv8tERa8Dv8o7Z7vLMTrrwSrr/eGpayYYM1KetYbNMcLnmVbBgpVHFXoTh8DqbnM5JdR0dbB9nzz1sSyt3d8MMfWoPPNW3MzBl1Rr2rZyRRjl+hODzGi1bTSBOLwa23WiMRTz7ZatOc855Wk2Ofo0mrR6FQjBLjRatpJFm50krp/OY38PWvw6pVx6fTHwo1c1ehOEZp7GpkydYlCCEochVRX1pPha9izNoo841hWOmcu+6C6mprJOJ55421VUcnKuJXKI5B+lM8Lt2FS3ORMBIs37OcYG/wqNRqOlIaG2H+fPj+9y2tnQ0blNMfChXxKxTHIP0pnlOrTmX5nuV47V7cdjdr9q5hRskMLq+/fNwM6BkKKeGBB6yirdMJTz4JV1011lYd/aiIX6E4BunfTFXhq2D+hPm4dBepTIpUJsWNc28EYPHaxUTTUWoDtUTTURavXUxjV+MYWz589u6FSy6Bz3/eivY3blROf7ioiF+hOAbp30xV6CqkwldBha8ip40zrWQa96+6f8SkGgYyWp8inn4abroJenutKVlf+ALYVBg7bNSlUiiOQQ62MSsfA2L66wr5/BQRiVh9+R/7GEycCGvWwJe+pJz+oaIul0JxDHKwnbL50M7Jd+vov/5ltWU+/DB897vw+utw4okjsvRxh0r1KBTjkOGkVKaVTDtgmmXh5IUsXrsYYNDGrsvrLz9sm/KlwJlOw/e+Bz/+MUyaZA1JOfvsI1ryuEdF/ArFOGMkUirTSqZxQd0FrG1by6MbHmVt21ouqLvgiPLx+fgUsWkTnHEG/OhHcOONloa+cvpHjnL8CsU4oz+lkjJSvLr7Vf65659s7drKYxseG/YajV2NLNu1jLlVc/nk7E8yt2ouy3YtO6J8/EgKvpkm/Pzn8L73QXMzPPOMNfjc7z9s8xQDUKkehWKc0RJtwW6z83rz63jsHjSh0RRqYlXLKoBhjSUcyQEs/fTXFRqaGmiJtFDtr+by+ssPeb3mZktJs6HBatd88EGoqDgskxQHQEX8CsU4o8Zfw7rgOjx2D1kzy47wDrJmllJ3Kevb1w8r7ZOPrp6BSA5P/PGJJ2DWLHjtNUtrZ8kS5fTzgXL8CsU4Y+HkhQR7gyChtbcVgUAimVgwkbSRHlYnTT7y8UdSewiFrPm3V18N9fXWsJSbbjq+NfPziXL8CsU4Y1rJNC6achESSSgRwqN7mFo0FV3TKXQVksgk+MvWv3Dbi7dx/6r79+t48zER63DbOV980ZqM9dRTcOedVtfO1KmHbYZiGCjHr1CMQ66ZdQ0zSmcwq3wWtYFaNJtGPBOn1FPKS7tewml3Dhl152Mi1qGmj5JJS2PnggvA67X68m+/HXRVecw76hIrFOOQfsf9+MbHWbpjKeW+cs6qPYt1e9cBcGrlqbmoG/ZftB2qz/9wGCgT0c+O7h00R5q57cXbBu03WLvWGn+4aRPccgvccw94PCNmiuIgqIhfoRinTCuZxvfO+x4PXfYQiyYvwjANkkaS8+vOp8L3bkV0JIu2Q7Fv+qixq5FX33mV2kBt7tPHb1f/jm98r5MzzrDGIb7wAvzqV8rpjzYq4lco8sBoSh4PjNzvX3U/0XR00N9HS39/33bO5kgz50w8J2eb0TWBP91+Nbs2lHLFFVbXTklJ3s1S7AcV8SsUI8xoiJUdiHwUbQ+FaSXTuPm0m7nrA3cxpXgKU4qnICW89pfp3HXNFezdUcFHv/Vn/vQn5fTHEhXxKxQjTD42Rw2XkdpENRLU+GtoC2ZY8pNLWPfSJKad2soV/7GEiROlatMcY5TjVyhGmHyJlQ2XkS7aHi72po/yk1v8JKMeLv/y65x+xb8Ip7tYOPnGsTbtuCfvqR4hhCaEWCuE+Gvf75OEECuEENuFEE8KIRz5tkGhGE3ysTlqPBGLWZ06n/u3GmoqnHzroT9z0qXPU+D2HXHLqGJkGI2I/9+BzUB/g++PgZ9JKZ8QQvwauBG4fxTsUChGhXxIHo8k+Sw8r1wJn/wkbN8Ot94Kd93lxOX6BPCJEVlfMTLkNeIXQtQCFwMP9v0ugA8A/9P3kIeBy/Jpg0Ix2uRjc9RIka/Cs2HAHXdYksnJpLUb9557wOUaIcMVI0q+I/6fA98E+sVUS4CwlNLo+70ZqNnfE4UQNwE3AUycODHPZioUI8vRkmffl3wUnrdtszZj9Uf7990HhYUHf55i7MhbxC+EuARol1K+eTjPl1I+IKWcJ6WcV1ZWNsLWKRTHJyOpyikl/PrXMHcuNDbCk0/CH/6gnP54IJ8R/3zgo0KIDwMurBz/fwOFQgi9L+qvBUan1UGhUOxXVmG4heeBtQFfaip/++nH+WeDlwsvhN//Hmr2+9ldcTSSt4hfSvkdKWWtlLIO+DfgRSnltcBLwJV9D/s08Gy+bFAoFIM53A1eA2sDnWvezw+uuYrlrzi47f+287e/Kac/3hiLnbvfAr4mhNiOlfNfPAY2KBTHJYdbeG5oasBjVvLsjy/lN9/4ICWVMb78u4epvuDP2NT+/3HHqGzgklK+DLzc93MTcPponFehONoZTU2ffg6n8PzGazrP3X0t3Xt9fOj6tVxy05vYdIOWSP7F3xQjj7pXKxRjxFhq+gyXdBr+4z/gka9+loQR54zbvknRxffSlWo7rjalHWsoyQaFYoxoaGoga2ZZv3c94WSYQlch1f7qUdH0GQ6bNlntmevWwYwLl1N6+Q8pL3ITNyTLdi5jevF0vjH/G2NtpuIwUI5focgD/SmcjcGNhJIhCl2FzK6YPSiVsyG4gZ3hnXjsHmtkopFgY/tGYunYmNpumvCLX8C3vw2BAHz+3heYdOZGUsbZbOncQjgZpshVRE2g5qi4QSkOHeX4FYoRpj+FkzWz7AjtQBMaoWQIn8PH4rWLc8XUcDKMDRseuzWFxGP3kMwkCSVDY2Z7czN85jOwbBlccgk8+CDct2k5AWctNpctN+DFlOaoic4pRh6V41coRpj+3bGt0VZ8Dh/FnmI8dg+t0dZBw8eLXEVkZZb2WDvr967nHzv+wYqWFezo3jEmef4nnoBZs+CNN+CBB2DJEqioUKJzxyLK8SvGNY1djdy/6n5ue/E27l91/1FRGO3fHRtKhnDZLbEat+4mnAwP2iU7q2IWAWeAtW1r2d69nVQ2hc/hI5QKce9r947aawmF4Jpr4Oqrob7eyul/7nPkNPPHeriLYuRRqR7FuKU/pVLsLqY2UEskFRmUShkr+iPkIlcRyUwSt91NwkhQ6CocFClPLZrK3cvvxiZslHhKkFLSk+yhxFPCy7teJpKKcMMpN7A9tD1v7Z7LllmpnbY2uPNO+M53QN/HKxxNw10UI4Ny/Ipxy1hOuhqKflnman81G4IbSGQSmJhMKZoySJ55e2g7Fd4Kdkd2Y0oTAM2mkcqmcOkudoV3cfvLt3POxHOYUjxlRG9syaTVpvmzn8GMGfD663DaaQd+/NEqOqc4PFSqRzFuGUnBsZGkP0L22r0kjSS7e3YTz8Tx2r2DnHZLtIVJxZOo8FZQ4avAoTlwaA4iqQid8U5ao604NAet0VZswkahq3BQjeBwWbcO5s2znP4XvgBr1gzt9BXHHiriV4xbjkRwbKQYaudtMpvk4ukXDxrGsq/9KSNFc08zwViQ3nQv8XQcm7Dhd/oxTZPOWCe2AfHZ4Yxw7LdxT7iVzc9+mOceOJOSEsELL8AHP3jk10Ax/lARv2LcMtZFx6F23g7cnLVk6xJe3f0qb7a+yZdf+HKuCL1w8kI0m8b0kunYbXYiqQgZM0OZt4yTyk6izFtGVmaJZd7t6z/UG1u/jbt32Xjqm7fwzK/OYtKZb/HsKzuU0z+OUY5fMW4Z60lXA2sM+6ZiNgY3siG4gaSRRBMaW7u2siu8i3gmnrtBAFxQdwFbu7ZimAYe3UPAYaWuoqkokWSEvbG9dMQ6aIu2HdaN7R87Gmh66Vz++/rraWks4TPff4kb/usF3gwvzcs1UYwPVKpHMa4Zy6JjS7SF2kDtoGP9qZhQMoQmNNx2N82RZnwOH+lsmngmPqgI3R5rR7fpnFx+MgFXgHAiTFeii7V713JC4QmcVHISMSPG0h1LWTRl0SHd2Do74RdfP5et/zqJaae2cv0dL1NS1YspDz1dpDi2UI5foThMhqoxdMY7CSVDxDNxetO9OHQHpjRzu3T7bxCrW1dT7CrGbXdT7asmnonj1JyY0uoCimVifGjCh3DqTvwO/7Cd/gsvwA03QEdnPR++5WU+8ulGbJocZKPi+EWlehSKw2SoGsPsitnMKp+FW3cjhABp3Sj6PyEMdL5SSCLJCG29bWSyGXrTvaQMq6Vz/oT5VPgqht2tFIvBLbfAhz8MpaXwvw3NzLr8b0QyIbX5SpFDRfwKxWFysI1Ni9cuZk7lHErdpbyw/QW6El04NSeNXY1oNo3L6y8n2Bvk+cbnCafCeO1ePHYPDs2B3+GnvrQ+p43Tf6MYqouof9j59u3wta/BD38ILtcJnNilNl8pBqMcv0IxAkjkoN/7bwr3rbiP5xqfw5QmAUeAzngnG4IbuPWsW5lWMo1rZ19LQ1MDDs1Bxsxg1+xUeisJp8Lct/I+yjxlVPmqmFI8hStPvJJ7X7uX9lg7SSPJJn0T6/au499Pu5U//WYad90F1dXWbtzzzx9si3L0ioEox69QHCbDkYzY2rWVGSUzKHIXkTASxDNxZpXPYvme5Szfs5wVLSt4J/IOAUeAUk8pfoefvb17iWViZMwMhmnwTuQdit3F/GXbX9jatZUSdwnFnmKSmSRrN8VY9E03LVusaP+++6Cw8CCGK457lONXKA6Tg0lGNDQ1kDEzlPpLEYhcYfftjrdpjbZS4CqgyF1EsauYSDqCiUlvupe9sb0kjSReu5cZJTPQNZ2MzLBs5zJmlMzAbXcjJex58WLWPHwNNj3Dk0/CVVeN2aVQjDOU41coBjCcGbj9j3ls42NMDEzkxLITc7n4gTtrW6ItVHorc0JtYKl0burYhEtzUey25JonFkxka9dW2iJthFIhkGDX7HjsHnaEdjC5cDJZsiSNJFJIEqEC3vh/n6N1zSmUzVrHSZ+9l6uuenR0L5RiXKMcv0LRx3BSNwOHrKQyKVa2rmR9cD3zqudhmAZtvW1UeCto7GrMSTJsbN8IgMvuIpQIEU/HyepZtnVtw2P3UOmtZHrJdFa3rs61fAacAfxOP+lsmj3RPUwqmkR9aT2Ny0+i8aFvkk25mP3pByk89zEWTFowlpdNMQ5R7ZwKRR9D7cQd+JismWVj+0aK3EU4NAfxTJy/bvsreyJ7cGgOagO1LF67mKlFU9FsGrPKZ+HUnOyN7iWSilDmLcOlu9BtOhkzw47QDlJGioAzwNm1ZzO5aDKGaZA20kgpCSVDFMhask8/wKb7foBW2Ez11z8CZ95Hha+Ma2dfO4ZXTTEeURG/QtHHhuAGwqkwkaS1Kau+tJ4yb9mgXa4t0RZaIi147V7cdjdZM8va4FrimTi7w7u5rP6y3FjF7aHtuXZPl+7inBPOIdgbJJaJ8UbzGwRjQTSh0ZPsoa23jSJXEZW+Ss4oPIOVLSvZGd5JJpuhOvRx/v6TOwm2uqj40IOUfeh+irxeSjyTKXIXjeEVU4xXlONXKLBSOE2hJjSh5Tpwlu9ZzqzyWUwumpx7XI2/htf2vEaVv4poKsre+F50oVPhrcAmbPyj6R+s27uO6kA1Rc4ibj7t5kE1gttevI0pxVMIOAO8uPNFNrZvxIaNEncJ555wLm91vEWRu4iLp19Md28vf/nN+1j51Hn4y7t5//fupHT6NhAnEM/EObXqVJy6c8znDyjGH8N2/EKIs4G6gc+RUj6SB5sUilGnoamB2RWz2di+kaRhFWOTmSQbghu46X035R63cPJCntnyDKF4iD09e6ycfSZOJptB13R8Dh+JTIKeRA/d8W4auxoHOeV+mYcKXwXV/mqK3cVIJG7dzRm1Z1DsLqY50ky0eQLP3/1p9mwtY/IHXqT24z+lM7uTAnMyBa4CALZ0buGcE85RujuKQ2ZYjl8I8QdgCrAOyPYdloBy/IpjgpZoSy4SX9mykq1dW5FSUuIpGfS4aSXTuPWsW7njn3ewO7KbgDNAmaeMYDyIsAkEgkg6QrGnmNkVs3P1gf5OIV3otPW2MaXYmsblsrtIZBLMrZwLwKTCKWx49jyeXnwxHp/B5d9/hHDdQ1T6Kol0ONjWtY0ZJTPwO/2Ek2Glu6M4LIYb8c8DZkop5UEfqVCMQ/ojcYCMmWFGyQxMrHGIAzt7Grsa2R7ajs1mw+/w47A5KPOW5Z4XjAeZGJjI/AnzKfOWsTG4kd09uwd1CkkpSWQSCKxp5v16PKGglwe/N5/tq+u45BJ4/xceRfjbWb+3iqSRZGLBRDZ3bmZPZA91RXU4dMegUY4KxXAZblfPW0DloSwshHAJIVYKIdYLITYJIe7oOz5JCLFCCLFdCPGkEMJxqEYrFCNNv+DamrY1eHQPEklnrBPDMFjVsor/fOk/+cf2f3DP8ntY2rSU1kgrAWeAdDaNbtMxMUkZKUzTzDny/qlb+3YKTS2ZCsDpNacT7A2ypm0NS58t5o5PXMHut6q466dBliyBqGM7AWeA+tJ6YpkYuk1nevF04pk4wd4gc8rnjPlgecX4RAwniBdCvAScAqwEUv3HpZQfHeI5AvBKKXuFEHbgX8C/A18D/ldK+YQQ4tfAeinl/UOdf968eXL16tXDeT0KxWHT2NXIDUtuoDvRTdpIY0qTqcVTKfGUEOwNkjJSZMwMNYEamnuaiRtxQskQqYylpBlOhXFoDiq9lZw94WxKvaXsDu0GG4M6hUxpsnTHUi6tv5TubsljPzqL5tfOpXbmHn7/UJaFp9UBcP+q+4mmoxS6Cgn2BtnSuYW9vXsp95Zz5/l3KoevOChCiDellPP2PT7cVM/3D/WEfWmh3r5f7X1fEvgAcE3f8Yf71h7S8SsUQzGc3bbDxaN78Af8dMQ7SBgJmqPNSCSVvkpWt67GZXfhsXuo8lexPbQd0zRBgMfhQbNpBJwBEpkEy5uXc92s61jfvp50Nk2xqxjDNFi+ZzlG1qDcV07bhpk8fMd59HR6uPCzr/LRGzax8LTP52xZOHlhblJXmbcMp+5kQmKCivIVR8ywUj1Syn/u7+tgzxNCaEKIdUA78A9gBxCWUhp9D2kGag7XeIViqLm3h8rjGx/HlCZbu7byTuQdRN+/lkgL9aX16DadZCYJgN/pZ2rRVLIySzKTxOvwckrlKcypnMMZtWdQ6CzkkY2PUOopxak7iRtxmiPNxDNxtnc0s/d/vsnPb7kEh8vgW79/ho/9n00EE4O7c8Z6tKTi2GW4XT1nAvcBJwIOQANiUsrAUM+TUmaBU4QQhcDTQP1wDRNC3ATcBDBx4sThPk1xnHEwobSD0f9pYWNwI3/b8TemFE5hZtlMVrWsoinUhNfupdBtrdmvh7+pYxOZrCWh7NE9eHUvM8tm5oq1CSNBxsyQzCSZEJhAkauIvb3W7Nxtb3noemwJu4PTOf2yVXzq1g04XFnCyf135yhJZUU+GG6q55fAvwF/wurwuQ6YPtyTSCnDfXWCs4BCIYTeF/XXAvttQpZSPgA8AFaOf7jnUhxfDDX3digauxp5bMNjLG1aSoW3gkw2g8fuYXdkN7W+WnwOH1mZRUpJLB3jwTUP4rV70WwaGSODRJIxMrjtbty6m1A8NEh6WRc6pe5SEkYCv9OPNG3seu4TtP/1i+jeMGWfu47QrDfY1vNBaqlV3TmKUWXYG7iklNuFEFpfFP97IcRa4DsHerwQogzI9Dl9N3Ah8GPgJeBK4Ang08CzR/ICFMc3Q829PRD96aGtXVup8FVgw8bmzs2cUHACzdFmtoW24bf7yWQzRNIR7DY7DpuDHq2HAmcBZd4yPHYPha5Cqv3VpIwUa9rWsCO0A13TqfZVo/PYbUgAACAASURBVNt0Tio/iZZoC7H2Ml77xdfp3T4Xx6xnOevzj+AvTLMz7OC5xue4bs51KoWjGFWG6/jjfW2X64QQdwNtHLw+UAU8LITQ+h77lJTyr0KIt4EnhBA/ANYCiw/TdoViUAE04AzkWij3Fz33p3WWbF2Cy+6iO95NbaAWIQQBV4BQMkR9ST2v7n6VWDpGwkjgsrnQdA1pShLpBKWeUoKxIFeffDUVvgpMafLKzlesuboAEqSU1AZqsaEh1n+GZb/6KFlpUPCJLzFz4RpqiycBbuZUzMl16SinrxhNhuv4P4XlvL8IfBWYAFwx1BOklBuAufs53gScfmhmKsYjI9ltcyAONvd2oC39ksv9dMQ7cOkuyrxl1PprebvjbQzTIOAKkDSSJIyEldLJZqwyr00QS8WIEuWJt57glMpTcOku1rWvo66gjokFE3OpnhJm8NJPPsHmV2cycfZO5nz+p7Trq5hUPCV3/oSRoNxXPqwh6grFSDIsxy+l3N2XrqmSUt6RZ5sUxwDD0bYfKYZTAB1YBC52F5M0ktT4a9gT2YPX4cVuszO5aDJZmcVn99GT7EETGlkzi03YyEpLqaQ7aW3IQkAoEWJz52YKXYUUeYpyU7b2rp3L737zRdK9fu6+G772tUk0hb/MF5//4ntqAVOKpijJBcWoM6x2TiHER7B0ev7W9/spQogl+TTsSGnsauT+Vfdz24u3cf+q+w+rvU9x+AxH2340aYm2EHBaTWj9O2H9Dj+lnlIkkmAsyPsnvp9ffviXfPGML1Lpq8Tr8CL7/rl0F0IIbMKGlJL2WDsd8Q4KnAVoQqOjt4N17zTy9L0Lef3Ht5N1Bbnp/gf5xjdA097V+MnKLHt79+LUncwqn4Vm01g4eeGYXBPF8cuhbOA6HXgZQEq5TggxKU82HTGjGW0q9s/hdtscDvumlKYWTWV7aPugFNPAInCFr4L5E+azpm0NXruXRZMX5ZxvQ1MDG4IbiGVieHQPPr+PjngHmWwGmZXodp2AK8CM4hnYdTtbOreQNJLs2VxF52OPYXZNxn3u/8Ox8E66AufS2HVB7j134dQLqSuqo6GpgdZoK9X+6rykvxSKgzFcx5+RUvbkClgWR22L5ZH2diuOnMPptjkc9r3J7+jewcPrH+aciecwpXhK7qZ/Qd0FLNu1DLBuQE7dyYzSGYPE1/rXmVM5xxJj696OZtOo9FXi1Jy09bbh0BzUl9QTcFmfHkocFaz704fpXfZVtECQos99HOf015hSOJWMzLznPaf68hVHA8N1/JuEENcAmhBiGvBl4LX8mXVkjGa0qdg/h9JtcyTse5NvjbZS7CqmNdrKtJJpueMDp2Htrwi87zoL6hYQTUdJGkmq/dW4dBcmJsWuYuyanZaeFjZvM+h87Kdk95yG59SnmXj13QQKTCp9pxNNRVmxZwWrW1bzyu5XuOGUG7hw6oUj+toVisNluI7/S8B3sQTa/gj8HbgrX0YdKaMVbSoOzLSSaVxQdwG/W/c79kT2MCEwgRtOuWHEo919b/LhZJhCdyHhZDh3rP+mf6Bou7GrkSVblyCEoMhVRH2ptcHcbrMTzoatVk0BLs2FRLKqZTVt//wIxgs/xmbPUPDJ/4Pt5D9RUjSTuqIptEXbWBdch91mp9pXTU+yh9tfvh1AOX/FUcFwu3riWI7/u/k1Z2QYrWhTcWAauxpZtmsZc6vmsqBuAZFUhGW7llFXVDeizn/fm3yhq5BQIjRoFu1QN/3+FI9LdyEQuZGLdmEn4AxwQuEJLKhbQLA3SGuklbY2SfvjizE2L8Q+7WWqP/ldpkx0sa3by7bubZR7y9nauRWkpedT46/B7/QD8Lt1v1OOX3FUMGRXjxBiyVBfo2XkoaLErcae0erq6dfRDyfDmNKk2l9Nd7Kban81pjQJJ8N0J7oP2DnTb+epVacSN+IIBG67m23d2zAxc9H/ls4tsOVy9vz4BVKN8wlcdhvlN11HoCxKVaCKORVzcOkukkaSWCZGlb+Kk8pOyjn9QnchzZHmEX3tCsXhcrCI/yxgD1Z6ZwUghn740YMqoo0to1Vn2XcD1+SiySyavMjq6hliQ9e+dtpcNuZPmM+Wzi2EEiF0m86s8llU+CpI9Np55RefpvmVRRRN3kn1dd+Ess147JUkMgkATGkNYPnjlX/k6v+5mp5kT87pA4QT4fdcD4VirDiY46/E0ti5GktD/zngj1LKTfk2TDG+GYs6i9yn0Wzf3/fHvm2eFb4KwskwiUyClkgLj/51F6t/9WUSnWVUfej3fO5rrfRkaliy7U0y2QwBZ4DueDfdyW6+euZXAbjhlBtyOf1CdyHhRHjQ3xWKsWZYE7gAhBBOrBvAPcAdUspf5tOwgagJXOOPge2RA+ssI5VyGyinvCO0g9pALXt797KpYxOhZIiTS09m0dRF9KZ72RDcwOSiycyumM3Uoqm81vway3YuoyvehUu3CrYl7hJ0m45hGiSMBDXuSbz26EU0v3AN7rIgMz/3fzFqX+HCyRfic/hYun0pW7u34tE8zKqcxVfO+EquR78l2kIkGWFHaAeRVITaQC03nHLDoL/nS8JCoRjIgSZwHdTx9zn8i7Gcfh2wBPidlHLUeiOV4x+f9DvnI9mstD+9HyB3U1nXto7mSDM7wzsxpUksHSOdTaPZNE4oPAGX5iKZTSKlpMBZwI7QDqSUGFkDXdNJZVNkzSx+p58JgQmEUiFcXe/jnYd+SGT3FGoW/I3PfGs9E8uLaOxq5O2Otwknw5T7yjml4hTcdjfdie7cPoED3ejyfSNUKPbHYTl+IcQjwMnA88ATUsq38mfigVGO//ijsauRxzc+zjNbnsHEpMBZQImnhGQ6yZ7IHrqT3dhtdtLZNA7NQTQZJYMlpqbbdDLZDKY0LRE2TxndiW5imRiZbAbNpiGEwJQm2aylwaNrOh7Nh/7mV+h49laEM8rMG36ONvOvGKbBnIo5TC+ZzormFZw36bxBKaxwMszatrXMrZr7nuN+h5+bT7t50Pzc/f1docgHhztz95NADGtI+pcH7NwVWGN1h5zApVAcDv3R8Zutb9Kb7sWpO+mMd9Kb6mV7aDuGYaDrOlkzm3Pk/QqaDt2BlBJNaCSMBKlsinQ2jU3Y0GwaRtYgmU2ioYGALJYIW7q7nOSzi6FpIe6Zy8hc8mk2e/fi6fZQ5LJE1V7a9RJZM5vT/Okn4AywJ7KHBXUL3nO8v5itNhUqjiaGdPxSymGJuCmOP/IludzY1ch/vvSfBGNBtnRuocBZgNfhJZ1Nszu8G7uwEzfj6OjoNp20mSaZtebg2rBhEzYSRgK7sCOlJbCWzqbJmlnsuh2jb9xzlmxOdMTc8HF47n7IOnBc+iWSc/+f1b4mIZaxdPnNZhNd09GExv+8/T+4dTemNHPDWCYEJrynmL2jewfNkWZue/E2dnTvIGWkBl0jtalQMVYox644ZEZywPn+1m2PtVPpqyRrZulKdJHMJLHb7CSMBFmZtdI0pkkqm0LIdzuMJRKktePWxLSUNJFkTes5KSOFifnuCROF8OdH4c9PQMlWxOfnkp77SyQmmk1DIq11sNEeb8eUJm7dzbaubWzq2IRAEEqEePWdV1k0edGg/QSNXY28+s6r1AZqsdvsdMY7efytx3nqradoi7YddH+BQpFPlONXHDL52pzV0NRA1swSSUVY07oml6tvj7XzTvgdMtkMPekepJRWUVZmycgMNmw4bA5s2EiZKQzTwDRNTGmiCx3NpuVuAjmazof7N8Bbn4Dzb4cb3g8l2wHQ0DCldYPQhHUD0GyaVZRNRzix9EQKnAXs6tlFkbuIcyaeQzKbHLRpsDnSzDkTzyHgDPB68+sEnAFmls6kI9HB0h1LSWQSqrCrGDOGPXP3eGE0pkaNdw6Wrz5QJ87BruuG4AZ2hnfmZBcyRoZYOkYkFUETWi4105+m0aQGgE1Y8Ytmsxy2lNKamCUENmxkzIz1fICME5b9F7zxNSjZAp89C2qsxoH+20KWLDZppY10m046m0aYgkTGmshV6iml1FtKOBFmQd0CTGm+RwvothdvozZQy6u7X8Vr9+K2u3HpLhyagwV1C/A7/Op9pRgzlOMfgNLxHx5Dbc5q7GrknuX30JHoIGWk2NSxiZd2vkSRu4gpxVMOeF0buxp5dfertERbMKRB2kjj0l3YhC0XfXscHoysQSJrOeAsVkeOIQ1s0or6JRIpZC7CN0wDGzYrt982B/73Ueg4GU77JVz4TXAkcq/Bhi03eMXExIEDwzSsiF9opIwUNpuN1a2r8dg9uZvf/nL1/dcolHxXNyhhJCh0FaqirmLMUameARxtU6OOVvbVxxmYr35sw2Ns696GwFK6FAjWBtfSFGp6z3V9fOPjfP+l73Pu78/lAw9/gKZwE/FM3Bp6ImXO6eo2nQJXAalsiozM4NAciAHqIRpWNJ8yU5jSxG6z47a7sWHDxCRrSvjXN+G3KyFRAtd+EC7+0iCn398G6tJd6OjYsJGWaZBQ4izBqTsJxoMUu4qRSHpSPYQSIRq7Gvebq++/Rk7NSSJtjVmMZ+LUl9aroq5izFGOfwADx/P1E3AG1DDsfRhKBG9FywqK3EV47B6EsGbQ2oTtPdcwkUnwzJZneHn3y0SSEQzTyEXnADabFX3bNatQmzSSZM1sLmUzMF+fxSreOmwOhBA4NSdOzWnJKYfq4KGXoOHHMGMJ3HIyTPv7e16TRIKAck85wmbdBDy6hzJPGcJmpYwKXAVkZIYZxTM4qewknLqT5kjzfj8R9l+jUypPIRgLIpGcVXsWTt2pirqKMUelegZwLOr456tmMZQI3sBOGwC35iZhJAj2Wi2aoWSIpu4mQskQCSNBT6on5/QzZibXSaPZNHRdR0iR+3vWzOYGnw86J4KUmcKGrW82rkZ2zafguXutB1x2Hcz5wwFlBgUCDY2YEcNr95IyUmg2Dafdic/mI5wMc0b1GUgkH6n/CABt0TbeaH6Dh9c/fMBaxjWzruGaWdfkdjD7Hf4hReMUB0fV4Y4cFfEPYKgUxngkX22XQ3Fm7Zl0J7tzhdBEJoFDc+Bz+Fi2cxmJTIJMNkNrbyuJjNVvrwudRCaBYRq5vH2WLGkzTTQdJSMzJLNJDGmQkZn9nre/P9/EJNHjpeuh35B5+gGoWgu3zEac8uiQ2rISSVZmiaaieHQPbrsbj+4haSTpTfficXhyffsAwd4gL+16CZfuyl3be1+7l3uW3/Oe6w1w82k3c9cH7uLm025WTuoIGIv39LGIcvwDONZ0/MeiZnHNrGuYUTIDU5qE4iFMaTK3ai7zJ8ynyF1EKpsinAxT46vB5/QRTocpdhfnCqrwbs5+IAIxuAf/QGz7EKn7VpPZsggu/Abi0wuhcPdBlTrLPeWUekut2oSniFMqT6HEW0KVv4oSdwke3TNI53/N3jUAnFp1au7atsfa6Uh0qBpRHlF1uJFBpXr24VjS8R8LmYBpJdO49exb3yPO9vD6h7mo/CJswsYzW56h0lfJ5o7NdCe7KfWUYrfZiRMHwMDIracL3era6YtRBt4gBpH2wNJ7YPUtUL4RPrUIKjciIVfk3R8aGg7dQV1hHTX+Gla3rKY2UIvH7sFr97InsoeeVA9Ozcmkgkk0R5qJZ+IkM0nOrzufCl9Fbq2kkWSArAmgZBlGGiV9MTIox38MM9I1i+HmVve9eTZ2NbKjewev7XmNKl8VmtBwaA6mFE/BHXUTS8dIGSkA7MJuiacNaNWEd523xOrRHxTBN58GT/8BumbAWT9BfOB2pD0x6HEDf9aF9bYXQuDQHOg2nZ5UD267m1mVs5hZNpPWaCthI5zbeVtTUMOCSQtyqppn1p6J2+4e9Lpduus96aTxXiM62jgW63BjgUr1HMOMZM3icHOr/c+rDdTi0ByEEiFCiRDNkWZS2RRXzrySk8pOothbjECQkZmc0x+IgZFz3P3RP1kNXr4dFr8GGTdc9wG46Fak3WrTzN0cBLh1d64jyK7ZmVw0mYAzkOvRd2pOZpTM4CtnfAXNpjGncg4fmfERq7vH4eHUylMHpRaklO+5tuXecsrcZcdMjeho5Firw40Vwx7EMpYoWebDZyQ08YEDygonMgnKveUH/BQw8HnB3iArW1ayrXsbRtagNlCLRNISaaG9t52YERvW1CwAuqbC//4BWs6EWY/Ch78I7p79PlQTGsXuYvwOPx3xDqSUVPurEQiSRjInu1DiKSFjZrDbLIG3rMyyunU1Z9aeSZW/Krde/07d6+Zc955rC4zI9VYcmJF6Tx8PHK4s85GccALwCFCBtRv+ASnlfwshioEnsYa67AKuklKG8mXH8c5I1Sw2BjcSToYJp8IUuYqoL63HlCZLdyzl0vpLD7gjd9+cbMbMMLNsJi3hFt7peYeeZA8SSa/ROzxDJPDmTfD3n4KWgiuvgpP/NORTsjJLIpPAa/cyrXgaNmyUecuQSM6oOYP5E+azbNcy3HY3Fc6KQUNSqv3VRNPRQev1pxYOdG2VE8ovx1IdbqzIZ47fAL4upVwjhPADbwoh/gF8BlgmpfyREOLbwLeBb+XRDsUR0tjVyI7QDjShodk01uxdw993/B0pLd2alJHC5rLlPg00NDXk/mMOzMlu6dyCx+6hN93Lzp6dGKZBxsyQyqSGZ0i0ApYshsaLYfJSuOx6CAxvc13SSBJOhanyVXHR1Iv43nnfy722fhnoKl8V9aX1uYJtQ1MDCycvzLVkDpycdXn95YdyCRWKo4q8OX4pZRvQ1vdzVAixGagBLgXO63vYw8DLKMd/VNPQ1MDsitm80fwGzZFmIqkI6Wza6tWXkme2PMNl9ZdR4at4j1hbsDfI0qaleO1edoV2YZgGnYlO4hmrg2fYqZ3Nl8JffgtpH3zoS3Dar8A29HM1tFxBWBMaLs1FS7SFlkhLrjYxUAY6aSRZvmc58yfMp8xblhNeu3HujVZRO9JCtb9abcBSjHtGpatHCFEHzAVWABV9NwWAvVipoP095ybgJoCJEyfm30jFAWmJtjCleApbOrfQ2NVI0kji0Bw5tck9kT2sbF7JR+o/MkisrV/wbl7VPF7Y8QLt8XaEELnducMi5YMX/hvW3QCVa+Bjn4TyzcO2PVcQ7pvAZUqTAlcBDU0NBHuDbO3aSrA3SHeim4kFE/HavWzp3IJTd+Y6RVRqQXGskfeuHiGED/gz8BUpZWTg36RVWd5v2CalfEBKOU9KOa+srCzfZiqGoD9dY0oTIQTFnmJ8Th+F7kKEEEgpaQo3DeqwGLjRpivRxezy2VT5qsiaWZy6c3gn3j0f7l8P6z8N5/wAPnvmsJ3+wA1futAp95VT7i2n1FNKc7SZt9rfYmnTUgAmFU4ilomxuXMzKSPF3t69qlNEcUyTV8cvhLBjOf3HpJT/23c4KISo6vt7FdCeTxsUR05/C51Dd1g99maWrJmlxF1CkasIp+YkZaQG7XRuibaQyCT4565/sqJ5Be9E3rE0diSY2YNE+4YdGv4Lfv8KCAnXnwsX3A76/uUabNhw65Yap+j759ScCCxxNQR4dA+pbIoiVxFrWtfw8q6XiaVjxNIxCtwF1JfU47F7aAw1Uu4tH9c7thWKg5HPrh4BLAY2Syl/OuBPS4BPAz/q+/5svmxQjAz9ee7HNjzG6pbVJDIJyrxl2Gw2skaWan81F0+/mJtPuzn3HF3ovLTrJYrdxbh1Ny2RFroT3RhZY5Ck8nton2lp5u+dC6f+Fi76GjgP3PGjCQ2HzZH7njbT6MKax9t/k7ImMkqqPFXs7NmJZtMo8ZTg1Jxs795OPB3P1SwyZoYbTrlBOX3FMU0+c/zzgU8BG4UQ6/qO/QeWw39KCHEjsBu4Ko82jHuOFiXCaSXT+P7532f+hPnc+cqdtMfaSRtpJgQmMKV4CtfMumbQ4/ulC3pTvSSMBGnD0rbPks0pYfYXXgEwBaz4MjT8CJwR+LdLoX7JQe0KOAJkyWJkDRy6AyNj4HP5cGpOMmaGRCZBta+aWDrGuuA6NJvGB6d8kFDS2kSWyWbY0L6BUncpfpefiZ6JLNu1jLqiOuX8FccsagPXUczAAunAVsJ8pSGGe5MZzgaa2168DbvNzl+3/ZVoKopDd7AztJOEYSlymsJK9xhZAxGZgFjyEMb282D6X+CjnwXfwTOAbs1Ntb+a7kQ3CcNS9ww4AjjtVg2h1F2KbtNp623LTfPSbZYSKMKqA2TNrJUCchdR4a1g0ZRFOHUnfod/0CeYo4GjJQhQjB9GfQOX4sgZWCAF9tsnP1IcytjJg3W5NHY1snz3cjZ1bqI33UuBs4CZgZkEe4NoNg2fw5cbp9i9ahGpZ3+GTTrxXP5V4rN/PqR8cr/mjkf3MLVoKu3xduy6HbtmJ5QIodk0CpwFuOwu0tk0Mivx2r2cWHoiO8LWXoRYOoZpmtaeglQvTrsTj91DobOQCl9Fbmfu0YQaC6oYSZTjP4oZTSXCkbrJNHY1cvuLt7OlawtpI42Uks54J8vfWY5H94CArngXjkw56SU/JbXuCrQJqzjti79gt20Z8dj+1+3X59FsGjZsuDQXqWyKSl8lCGiJtFiyDE5/TnDNoTnYE95Dma8MBEwITKA52mx9OpAGyWyShJHAbXdjt9mJpK2ms4GiX0dLlD2aQYDi2EeJtB3F9LdRDiRfSoQjNXayoamBzZ2b8Tl8ODQHds1upVRklpgRw6k5se++iN7/fo3khktxLvwh5V+8gm3yeXrSPe8KsPVhw5YTVytyF1HmKaM6UA0C2nrb2Nu7l9ZoK5lshhMKTsCu2a25uUInno6DgLNrz8aUJqWeUiq9laSzaTLZDJlsxpqJm03QEeugI94xaIbu0TT0Q40FVYwkKuI/ihlNuYCRkrttibbQm+4lK7M47U4cugMbNnozvRgpnfSLPyL68vV4q/Yw89//nVjZy5h42d7dZo1MxEaBowADawZvOptGExp2zY4NG9F0FFOamKZJKpuiwFlApa+SaCZKKBWizFNGOpumzFtGTUENE/wT8DisISpxI053spsCVwE9yR5MaWITttynkkKzkOe3Pc+CugU0NDXQHms/aqJsJUesGElUxH8UM1oTwRq7GmmPtfPMlmd4YfsLtEXbDlvutsZfg8/hI56OI01Jb7rXKqTunQu/XUX45es5/bJV/OhPSymbvoveTC8zy2ZS5i2j1FOKrumkzT5nb7Oj23QcmgMTk7gRRxOa1aqJiVt349AdTCiYwNSiqRimQUesg0umX8KCugXMKJnBl874EjfOvZE55XMI9gYJJ8K4NFfuk0gqmyKdTVPgLMDj8NCb6aXCV0E0HeXvO/5uFYKxRi3+c9c/eXnXyyzZumTUo34lR6wYSVRXz3HAUHnqgUXDRCbBur3rCMaCLJq8iGtnX3vIN5n+HP/SpqVkshmE1Em++kUyDbdj84RwXXELnhNfoa6wjrZoG6XeUk4uP5kNezcQjAVJGkmrO8cVIJQI4dbdmNIkmo6i23QCzgCa0Ehn01R4K8jKLKfXnE44GUYgiKajnHvCuVT7q5laNJXtoe251z21aCrfWfYd2uPtxNIxS3pCd2C32cmaWar8VdhtdmaWzWRB3QJe2P4CSGu84vI9y/HYPbk9ATNKZ4x6YVXJESsOFdXVc5xysG6QgUXDQlchVf4qwskwfof/sJzKtJJp3PWBu7Db7Dz12krSf34Qdp+D4+QlmBffhKswg25zEElF6Ih3UO4tB2BS0SQSRoKsmSVjZihxl1DsKiaWjpExM6SzacBS2azx1+DUnJiY6FJnQd0CgJzdN592835f97Jdy6jwVtCd7KbEXUJLtAUja6WTbFgpnwmBCYSTYQBOqTiFv+/4O2v2rsFtdyMQxIwY8yfMx6k7Rz3lozSDFCOFcvzHOAfrBjnSzqH9fZqYWjyNyu3fIvOrEwCJ6+M3YZz8EAKw2QoQQuDUnbh1N1u6tiCxHO7kosnsFDupc9RR4atga9dWnLqTWcWz6E330trbil2z49E9FLmL2Ny5menF02mLtrEuuI5gb5CLplyUs2l/rzsYC1LrryWZTdKT6skpjBrSwJRW3aDUUwqA2+5m0eRFrGhZYQ1hd1tD2I/Wlk+FYrgox3+MM9CxB3uDbOncQneiG4Fg4eSFR1Q0bOxq5J7l99CR6CBlpNjUsYnXtzbS9Mi3WP6Pk/FNW4P2setxlQTpSkh0m52EkWBK8RSi6SiVvkpaoi2ks2k2dWxictFkzjvhPD4+8+Ms27WMpJGkwldBykhhpAz8Dj+GadCd7KamoIYza87EqTl5eP3D2G12phVPozfdy+K1i4kkI8yunD3I3v5Ri267mzJvGV7dy/rgehzCgdfhJZVNsblzM5fNuCyXQ7+g7gJLwTMWHLSWKqwqxjPK8R/j9Dv2lJFi+Z7leO1eXHYXYGnRX1B3Act2LQMOvXPosQ2Psa17G8XuYopcRexcVc/zv76FTG+AKVf9hsIP/I6EYRDPuNFSGhKJLvRcYdQwDWumrd2D3+Gn1FPKN+Z/IxetV/oqSRgJPHYP5d5y0tk0uk0naSRZNHkRU4umcu/r91JfUk+Rp4hkJvn/27vz6DbLO9Hj30eLJVm2LMmLEi+Jke3EhMQhaSCElDJpQlK4QFpKCwWGHoZOezkw7S1Ll7n0tBfundP2Zk7bmcxNy1BaSkthYKaU0rLUTkoDmBAWxyEkwUuceInteJe1S37uH68lHCexJW+S4+dzTk5s+fWrn96c/N7nfZbfw8Hug6wqWEV/oD/+ud9qf4tjA8fwBr0EooF4eYeB4AAuqwt0Ws2fC+wX4A/7aehr4ML8C1njWkNNSw3FtmL6A9pewS83vozFaMEb9rLVvZWG3oZZ635JlzUEyvlHzeo5j8U2QnnuyHM8+8GzREeiSCT+sJ+1i9bitDhp7G+c8syhfe37cFgcZEQd7P/3O6j9wXcwHTVRigAAHs9JREFU24YpvPfTXPq5VxkOD5KVkUVBVgFLbEuIjkSJjETwhrwEI9psmuyMbK1LxmLHYXbEu59sJhuVeZX4wj58YR8mgwlf2EeBtYD1Retp97TzWN1jDAWHcFgceAIeWodaaRlo4S/H/oKQgsbeRl748AWO9hwlEAkwGNK2eez192IxWIiORCnOKWZpzlJuuugmrlt+HTdedCPrCtdx1yV30djfiNPipCK3go0lG9Hr9LR6Wun2drOtbBuZGZmzNq8/ndYQKOcf1eI/T40d3NxWto0nDz7J0Z6j5JhzcFgcHOk5wrLcZXiCnqQHDWMt0Q97P0TfsYGOJx7C27mYC6//IxWf/RWNnhaKbNdwoOsAfYE+wtEw3pBXm5ppyCAcCqPX6SnOLkYv9BztPYpBZ6DH20NDb0P8KcWV5WJjyUaO9Byhc7gTs8GMlBJv2Eubp43atlqCkaD2Jxokw5CBzWSjz99Hb6CXPGsegUgAnU6HN6gtHov153cOd+INeanvqufSokvjn21sF87YbrLY7mJrF68lFAmdtvn6bAzyqpW6ymxSif88NX62zrLcZRw6dQiD3kBJTgmBcIA9LXvYVLopqfPGbig5xlz0f/1fNDx3M4acbi779oMUVh2l19/L5gs2o9fpWZG/gt3HdgOQoc8gx5yD2WCmOLuYiIwA0OfvIzoSJc+ah1FvPKP7Kd+aj8lgwtprpd3TzsHugwwGBynKLqIgs4BubzdHe4+Sn5mPN+zFF/Kh1+spsZXQ0NdAYXYhBp2BN9vexGw0o0ePJ+Sh29fNirwVdHo7iY5ET+vCiQ0Qjx//GAgMYNKbThsPsZlsHOw6yK79u2a0S2Yuy3UoC49K/DMgHfti67vqGQgOMBTQEtdwcFirTBnyx+eiAyS7jqO6uZqRnjL+7aFraD9cRObH/pOs7f/IKVuURXJVfNFUS38L1U3VmAwmjDojrkwXUmgDq/6wn8WWxRztPUpURsnMyKTEVkJeZt5p3U+xfW71Qo8QAn9Eq5evEzo6PB1kG7PjC7DahtripaDtZjt1nXVYM6w4LU5aBlowG8xa6QiiRGVUiyPq56K8iwBoHWrFbrZzw4U3YDFa4jegZw8/S7e3m0AkQIenA7PBzLXLro1fj6a+Jhr7GllqXzqjxdPUSl1lNqk+/mlKx77Yht4GmvubGfQPYjfb8Uf8HB86Tq4ll2xTNgOBASwGC5tKN2m7YiVISvjDk4X8+I4v0nXCxiVf/Wc++fVfsijfTCAa4OJFF3P/5ffT0t/Cjtod9Ph7KMoqYnnecpxWJ5eXXE6mMTOeyA06A3mZeSzPXY4Qgsq8yjPqz0gk+zv209zfTLe3m9bBVnToCEaCHO49TDAa1DZcIYpO6HBanBj1Rhr7GwmEAxRYC+jz92E1WglEAgTCAYQU5GTkMBQY4tLiS7GZbawtXEuxrZjF2Yuxm+04LU7eaHtDuzEKbX+BfGs+gUggvg3lQGCA+q56qlxV2M12dEIX/93q5upp/RuqlbrKbFIt/mlKx77Y6uZqqlxVHOw+SCASwGK0kGnIpMffw+1Vt+PK0va3jy14SkRnJ3zpS/DiH7fjvOgdFt32bfy2k3T7MnFZXbjt7vhirB21O9ALvZYow4H4k1CPr4dVBatoG2rDYXbQ4+3BqDeSl5lHZV4lAC83vUyPt4e32t+ixFZC53Anr514DZPBhNvu5hSnaB1qxR/yMyJG4uUcYjxBDznmHAw6A73+Xu6//H7ahtpo7G8kx5QT3ybSoDNQkVuBK8vFm21vnrUL54UPXyA3M5dQJITD7KAyr5Kh4BAfnPqAQ92HGA4P0zHUgS/so8PTQWVeZXwsYLpdMrFyHbGnnsLsQj5T+ZmUP0kq5weV+KcpHfti2z3tlDnLsJlsHOk5woB/gFJ7Ke2edkwGEyNyJKFpm7EurN0v2njpRzcQDpi468EPec62HTJzsBiteMNeTvlOcV3FdXR4OqhuriYyEiEvS9sEpam/CZ3Q0e/rxxPw0OPrwe1ws8q1is9Ufoaalpp4uYg9LXsA7fp5Qh52t+zWNkUxZROOhjk+dBy3w82BrgOEZAiTzoRJb8Ib1mo5x2r8+8I+nGYnEklFbgU//tSP+fl7Pyc6EqV9qJ33u9+n3dOOQWfg90d+T1NfE/6InypXFV3DXbiyXDT1NdE21EZuZm78qen11tdZ5lxGf6CfjSUbqe+qx2w00+XtwmKw0Ovvja/qnYkuGbVSV5ktKvFPUzr2xY6dFTO2de8P++PTNidrQTb0NvD/Xn+C1352I2//qYrCZV1c/Y3fUOAe4qLWC+nx9eAP+7EarRRmF3Ji6ARb87fS7mmnIKsAf8SPzWzDlemiaaCJFn8L1gwrH7d9nMHAIM988AxGnZGbL7qZQDTAnmN7cJgdLMlZQs2xGnp9vQghGAwMYjaY8Ya8IMAb8mLRW4iMRLAarUgkGboMolKbqpqVkYXJYMIT9rC+aD2gJdDNpZvZUbuDwcAgERnB7XDT5+ujrrMu3uUUHYny2onXqHJVUd9Vj9vu1jZwF0Kr0wO8euJV3HY3HZ4OsjKyKHOUcbjnMN2+btx2N++efJflectnpYKqoswUlfinaS5LJ083pmQGHH/6X+/zq+/eS3+XjavveI9rv/wOw9EIe47t4+NLPk5tWy2ZxkwsBgu+iI+u4S62uLdQ3VxNMBLkYPdBPEEPnT5tGqY1w0qJrYR3O9+l3FHO4uzF9Pv6eerQU+y8ZiftnnaMOiO1bbXxjdKFFAyFhjDoDGSbsvFH/LQOtaITOoqzi7FkWLRyyiY7vf5eJBK9Tk84EiYYDWI329m1fxdb3Fto7G9ks3sze4/vJRgNEogECI4EsZlsXJh/IeFIGJvZRudwJ21DbbgdbhZlLaK2rRZAW/QmtU1kbqi8Ib6GQSCozK2keaCZQDSAlFLtiqWkPZX4pykd+2KnE1MoBN/7HvzoB9vJXezh/kf+QPnFWrkCm8GGQGAxWuLz6wcCA2QYMtjq3gpAt7c7vkL4pOckoWgIk97E0pylSKltgzgQHKAgqwCHxUHncCfVzdUUZRfxSvMrZBozWWJbQtdwF8PhYUzChD+s7ZK12LoYvU6PP+In15KL3aLNVvKN+OItfbPBrHXb5FVxxdIr4rNsBgODLMpaxIHOA1o9f0YYDg3jDXmpcFYwwghXll4Zr8FTmF2IJ+T56HP6B8jQZ7DatRqL0YLDrK0UthgtGPQGVrtWs3rR6ikXt1OUuaQS/wyKTZFMtalOL/3gA7jtNnjvPdi4/Qjb7n4FMjy82vJRgi93ltPn78NpccYTa5+/j40lG09bMFbXWcdAcICLXRezvng9R3qO8M7Jd7CZbPEa9/6In4KsAjo8Hdy++naeqH+CRdZFZJuzcTvcvNv5LpnGTIQQOC1OhoPD5JhzsBgs2ljFyAhLc5bS6e3EYXZwTcU11HXW0R/oZ/MFm+OzbACODxynoa+BQDQQr/EvpcQX8fF66+u4HW66hrvi/fOxp6bxnzO2xqAwu5D6rnr8YT8jjFDmKEv5k56iJEpN55ymdJvOOZV4RkbgJz+BtWuhrQ2eew5+8XMjrf4PqDlWgy/iw6Q30e/vJxgNsrl08xklHmLlDWLTGjONmViNVlqHWgGozKtEL/TxPvtYKYbi7GIKswupyK1gW9k2JDI+GH1Z0WUszlrMoqxFlDvKKXWUsiRnCVWuKi4rvgy9Ts/KgpXcsvIWrqm4hm5vNx/2fkh0JMqRniN0DY8+qZhsOC1OmvubycnIQSLxhXxERiLohA5/2E+OOYeaYzU09jbGb5RnK2VxVflV3LnmTtwON+XOcnLMObjtbtwOt+riUeYN1eKfpnSbzplsPG1tcMcdUF0N114Ljz4KLhdABUW2Ik75ThGKhLCb7WxevJmh4BCP1T1GmbPstKeJWIXMvS17OdRziBxTDouzFnNs4Bg1x2rYVLqJDcUbqDlWg17oMRlMlDnK0Ov08bnpt6y6BX/Ej9PixGay0dTXxN4Te7liyRW0edqIyigjjHBh/oW4slzkW/PPqL+/LG8ZoNXtf7319fgsm5UFKznYfZChwBAI6Iv0Yc2wYhAGbZtIvYnsjGyKbEXx63SuWTVqto0y36nEP03pNp0zmXieegruugvCYXjkEW2e/ujiVwDCI2G2lW9DJ7QHw67hLuq76omMRLiy9MrTVqkadUb2tOxhMDBIjjkHgaBjuAO33Y3dYmdf2z6uW34dN110E439jWfdRWr82ITb4WareyuN/Y3UttWyxLYknvTHf65YLaJefy89vh5KbCVYjdbTZtl0e7vZ07KHMmcZR3uPYtQZ8Ya9LM9dznXLr1M19pUFQyX+aUq36ZyJxNPfD/fcA08+CZddBk88AeXlk5/rSM8R9EJPXlbeaf3n1c3V8dIP/ogfW4aNsAwDkGXKYlvZNtqH2rnrkrsAuIqrzniv8eMSt6++PX5DiB3vCXnO+rkaeht4uellbXVuOIA/7Ke+q54SWwm5mbnxLphbVt1Ch6eDbm83UkrC0TCLshbFi7TF5u4/uPvBtCm9oSizQfXxT9NcLa1v6G1g1/5dPLj7QXbt33XOPvvJ4qmpgaoqePppeOgh2Lv37En/bOc6OXySEUbiq2yBeImFiIywqXQT2RnZDAWHyNBlsDx3eXyx2EQ3wj83/pl7/nQPz3zwDM19zTT3N58xLjHR56pursZqtHJ88DgRGaEgq4DczFwGAgNcVnzZaU8U919+P1vLtnLl0ispshWxvmg9+dZ8Gnob2HtiL8W24rQYq1GU2aRa/NM0F9M5J9s3dzyLwcKeY9oq2PVF67lzzZ2UWCu491740Y9g+XKorYVLLpn8s20u3cxjdY/ROtRKIBxg9aLV8a4WOP1pwhPycP3y68/YmHyi2S4NvQ3sqN2BP+InEA7wruddDnQdYEPxhtPGJSa6zo8feByT3oRAEAgH6PP1aQXdomF6fb1nfKaxG83Hztc21MYVS66I/2wmxmrSsXifosAsJn4hxGPAtUC3lHLl6GtO4GmgFGgBPi+l7J+tGObKbA/2JTpgO/YGsb1ye3wK4uH3M7jhHnj/fbj7bvjhDyEzc/L3behtoKalhjWL13Bl6ZXxwVanxUmZs+yMxWqx995QvIG6rjq6vd1sLdvKLatuOef1qW6uZig4xGBQm+2TY87BG/LyRusbmAym044913Uuyi7ijdY3KMwq5EjfEaSUZBgycJgdvHPynXPukjX2fA/ufnBGx2qSvVkrylyazRb/L4GdwK/GvPYtoEZK+X0hxLdGv//mLMZwXkh0wHb8DcJmdPCX31zKjn8vpiAfXnwRyi5p4PFDibVCx58vdlzbUBtmg/mMp5tYi9wT9LDVvTWhFm67p51INIJe6DHqjQBYjVZ6/b30+fsSuj5b3Ft47shztA+3s8i6CASEIiEKswvJMmWds9U+tkXe1NdEMBI87bjpjNWk22wvRRlr1hK/lPKvQojScS9vB/5m9OvHgb+gEv+kEh1AHnuD6OnI4hff3UTje4upvOIQr/3uIvpIrhV6thtOmbMMs8HMw598+Izjp/LkU5RdhE6nIxqJEoqGMOqM+MI+MvRaiz0RFbkV3L/hfr7yx69glEZsGTbysvPQ6/Rc7Lo4XuZ5bKI3CAMnh09S5iyj2FZMMBJk74m98c843dIb6TbbS1HGmuvBXZeU8uTo152A61wHCiG+LIR4Wwjx9qlTp+YmujSV6AByUXYRg4Ehal+o4OEv3Ejbh7l8/n/+kX/Y8Vdyc09vhSZSOz52wxlrpmcsbXFvwW62k2fJwyAM8Vr3G4o3sMq1KuHzXFV+FbdX3c6K/BUUWAsosBawsWQjFqMlPvNn7MK2A90HONp7lGAkiE7oqMit0NYLDLUlvffw2czFtVOUqUrZ4K6UUgohzlnjQEr5CPAIwLp169KjFsIMmMqAX6IDyGtztnL7nX4+fG0lFWs6uOEfnwd7C1eV3Qkk3wqdiwJ0sdb6jtodGPVGynPLtb14dXrKHeVJbWl4a9WtBN4LxBeAjY13fNdLKBLCaXZypOdIfLB6oqeZZKVj8T5FiZnrxN8lhFgspTwphFgMdM/x+6fUdAb8JutGefFF+Lu/K6O3V/Lpe2pZcf2LFNsXs8X90bmTXXOQ7IylRG9qZztu5zU7qW6uji/sKneUx2v1T3atxp7PYrDgC/nwBD1nzPwZe9Ozm+34Ij4GAgMJXYtkpWPxPkWJEcnuuZrUybU+/hfGzOr5v0DvmMFdp5TyG5OdZ926dfLtt9+etTjnyq79u85YhBTbBSu2uClZXi888ADs2gUrV8Kvfw2rV5/92LE3nqmUa54osSd67smOi73HkwefZCg0hN1kp9hWTGVepbYpy7hrlej7jr/2XcNd1ByrwWF2sK1825RKV092TRQl1YQQ70gp141/fdb6+IUQvwVqgeVCiDYhxJ3A94GrhBANwJbR7xeMdk87NpPttNfG7zGbjLfe0gqr/fSncN99sH//uZM+fNQKzc7Ipr6znvdOvsdQYIjq5upJFypNVvwt0fGDiY6LvUdzfzPtnnaiI1FO+U7R4+vh9dbX8Yf9Z1yrRN93/DiJyWBimXMZFy+6eMp9+ulWoE9REjWbs3q+cI4fbZ6t90x3M1XeIRKBf/onbeVtYaG2GnfTpsR+N5bYjg8ep9RRGm8lT9blNNn0xETHDyY6LvYeBzoPkGPKQQihVesMDFBkK6Kuqy5e9z+R843/3OO7Xh7Y+MC0WudqyqYyX6mVu3NoJgb8Ghrgb/8W9u2DW2+FnTvBbk/g98bNWS+2FSeVsCZLsIne1CY6LvYeA4EBSmwlNA00kaHL0PbUldomL2ebyZTozXQmF9o19Dbw/NHnAXBanDO60bqizDaV+OfQdAb8pNQqaN57L5hMWmXNm25K7H3HDyrXttbS5+/DZrKdtdLl2N9LdIFToje1iY6LreKNbW5e7ijnxOAJ7fMj2Vq29Yxrlej7ju+LL3eU09jfOKW++dj1NBvNwJkloNWUTSXdzerg7kw5XwZ3J3OugcLOTrjzTvjTn2DLFvjFL6C4ePLzxYwf2Hy15VX6/f04LA6uLL0SOHOQefyg6dja+GXOMpr6mqjvqqfMUcYq16p4S3zszJzJZvWMPy72ntGRKAe7D6JDR1RGqXJVodfpz9kVda7zjf35RJ8l2YHd2PUMRoJn1CVanrdclWVQ0sa5BndViz9NnGuq55KTX+W79xYyPAz/8i9arR1dkkPy47tpKvMqeb31dTqHO+PVM8e3kicq1+ANeWnqb6LKVRVPnLExgkRmJ020wUnsicgb8tIf6MdpceJ2uCdskU/WhTP+s3R4OnCanXR4OqjIrUi6bz52PXVmXXxP3v5Av9poXZk3VOJPE+OTkymST82PPsXbfypkzRptmuaKFVM79/h+cFeWi1UFq+KrVM/W5TRRuYbC7EJKHaUzOqg5/mnn6xu+PmMJdPxnGQgMYLfYT5vDn0zf/Njr6cpy4cpyxZ+YVNJX5gNVjz9NjJ3q2Vjn4uFbPss7L61k461/4c03p5704ewlH/Q6PQ9teoiHP/kwd11y1xkJa6KSAzM9LXW2p0WO/yx2s50B/8CUZ1fN1R4MijJbVOJPE0XZRfQND/O7nZew4++vRwj47zt/y61fO0xGxvTOfa6NwydqnU6U3Ga6Dk2yNYSSNf6zFGYX0hfoozC7cEqJeyrXU1HSierqSRNLQ9fwvS8Z6W4q5PLth/nU3S/jFZ1scd85I+dPdirjZDOQZrIOzWRTRae7OnaivXynWk5BbbiuzGdqVk+KjYzAv/4rfPObYM2O8Llv/pn8tW9MOCsmHUw2kyYZE5WyiE3XnGqZCUVZyNSsnjTU1gZ33AHV1XDttfDoowZcrquBq1Md2qRiSTfWEo91y0ylgNtkc/vV6lhFmVmqjz9FnnoKVq2CN96An/0Mnn8eXOfcnSD9JDMgO9mxE/WZz/RAsqIoqsU/5/r74Z574MknYf16bZpmeXmqo0peMi3xRI6daD/dmahvpCjKR1SLfw7V1EBVFTz9tFZg7bXX5mfSh+QqjU6n1a6mTirKzFOJfw4EAlqNnS1bwGqF2lr4znfAMI+ft5KZ0jmd6Z9q6qSizLx5nHrmh7o6uO02OHRIK7fwwx9CZmaqo5q+ZCqNTrcqqZo6qSgzS7X4Z0k0Cj/4AVx6KfT1aVsj7tx5fiR9SK4lrlrtipJeVIt/FrS0wO23w9698NnParN2cnNTHdXMS6YlrlrtipI+VIt/BkkJv/ylNoBbVwePPw7PPHN+Jn1FUeYvlfhnSE8P3HijtiBrzRqor9da/UKkOjJFUZTTqcQ/A156SVuM9Yc/aIO3u3dDaWmqo1IURTk7lfinwevVZupcfTXk5cH+/fDAA6DXpzoyRVGUc1OJf4r274e1a2HXLrjvPu371atTHZWiKMrkVOJPUiSirbrdsAH8fm017o4dYDanOjJFUZTEqOmcSejv17p19u2DW2/V5uXb7ZP/nqIoSjpRLf4k2O1QVqZV1vz1r1XSVxRlflIt/iQIAb/5TaqjUBRFmR7V4lcURVlgUpL4hRCfEkIcFUI0CiG+lYoYFEVRFqo5T/xCCD3wb2j7C64AviCEWDHXcSiKoixUqWjxXwo0SimbpZQh4ClgewriUBRFWZBSkfiLgNYx37eNvnYaIcSXhRBvCyHePnXq1JwFpyiKcr5L28FdKeUjUsp1Usp1+fn5qQ5HURTlvJGKxN8OlIz5vnj0NUVRFGUOpCLx7wcqhBAXCCEygJuB51MQh6IoyoIkpJRz/6ZCXAP8GNADj0kp/88kx58Cjs9FbAnKA3pSHcQUqdhTZz7Hr2JPjenGvlRKeUZfeUoS/3wnhHhbSrku1XFMhYo9deZz/Cr21Jit2NN2cFdRFEWZHSrxK4qiLDAq8U/NI6kOYBpU7Kkzn+NXsafGrMSu+vgVRVEWGNXiVxRFWWBU4lcURVlgVOJPkhBCL4R4TwjxQqpjSZYQokUIcVAIUSeEeDvV8SRDCGEXQjwrhDgihDgshNiQ6pgSIYRYPnq9Y3+GhBD/I9VxJUoI8XUhxCEhxPtCiN8KIebV7tJCiK+Nxn4o3a+7EOIxIUS3EOL9Ma85hRB/FkI0jP7tmIn3Uok/eV8DDqc6iGnYJKW8eB7Oa/4J8JKUshJYzTz5N5BSHh293hcDHwN8wO9SHFZChBBFwFeBdVLKlWgLLm9ObVSJE0KsBP4erSLwauBaIUR5aqOa0C+BT4177VtAjZSyAqgZ/X7aVOJPghCiGPhvwKOpjmUhEULkAJ8Afg4gpQxJKQdSG9WUbAaapJTptAp9MgbAIoQwAJlAR4rjScaFwD4ppU9KGQFeBW5IcUznJKX8K9A37uXtwOOjXz8OfHom3ksl/uT8GPgGMJLqQKZIAq8IId4RQnw51cEk4QLgFPCL0W62R4UQ1lQHNQU3A79NdRCJklK2AzuAE8BJYFBK+Upqo0rK+8AVQohcIUQmcA2nF4icD1xSypOjX3cCrpk4qUr8CRJCXAt0SynfSXUs0/BxKeVatN3P7hZCfCLVASXIAKwFdkkp1wBeZuiRd66MFiS8Hngm1bEkarQ/eTvajbcQsAohbkttVImTUh4GfgC8ArwE1AHRlAY1DVKbez8j8+9V4k/cRuB6IUQL2q5hnxRC/Dq1ISVntAWHlLIbrZ/50tRGlLA2oE1KuW/0+2fRbgTzydXAu1LKrlQHkoQtwDEp5SkpZRj4L+DyFMeUFCnlz6WUH5NSfgLoBz5MdUxJ6hJCLAYY/bt7Jk6qEn+CpJTfllIWSylL0R7Zd0sp503rRwhhFUJkx74GtqI9Cqc9KWUn0CqEWD760mbggxSGNBVfYB5184w6AVwmhMgUQgi06z4vBtVjhBAFo38vQevffzK1ESXteeCLo19/Efj9TJzUMBMnUeYFF/A77f8vBuBJKeVLqQ0pKf8A/Ga0y6QZuCPF8SRs9EZ7FfCVVMeSDCnlPiHEs8C7QAR4j/lX/uA/hRC5QBi4O50nBQghfgv8DZAnhGgDvgt8H/gPIcSdaKXpPz8j76VKNiiKoiwsqqtHURRlgVGJX1EUZYFRiV9RFGWBUYlfURRlgVGJX1EUZYFRiV9RJiGEiI5W1nxfCPEHIYR99PVSIYQUQvzvMcfmCSHCQoidqYtYUSamEr+iTM4/WmFzJVoRrbvH/OwYWuG+mM8Bh+YyOEVJlkr8ipKcWqBozPc+4LAQIlbm+ibgP+Y8KkVJgkr8ipIgIYQerWzB8+N+9BRwsxCiBK0I2HwqXawsQCrxK8rkLEKIOj4qi/vncT9/Ca0kw83A03Mcm6IkTSV+RZmcf3QHraWA4PQ+fqSUIeAd4D60yqGKktZU4leUBEkpfWhbEd43uiPVWP8MfFNKOX4HJUVJOyrxK0oSpJTvAfVoZZbHvn5ISvn42X9LUdKLqs6pKIqywKgWv6IoygKjEr+iKMoCoxK/oijKAqMSv6IoygKjEr+iKMoCoxK/oijKAqMSv6IoygLz/wGByQ/hLovMkgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" } } ] }, { "cell_type": "markdown", "source": [ "# Intepretación Probabilistica. \n", "\n", "Supongamos que tenemos una caracteristica $x_i$ con m valores de entrenamiento, si asumimos que cada valor $y_i$ presenta una dispersión gaussiana $\\epsilon_i$, cada $y_i$ podrá tener el siguiente valor:\n", "\n", "$y^{i} = \\Theta^T X^{(i)} + \\epsilon_i$\n", "\n", "Asumiendo ademas que el ruido gaussiando es aleatorio y esta distribuido de forma identica, con media cero y varianza $\\sigma$, tenemos que la probabilidad de que la cantidad y tenga dispersion $\\epsilon_i$ es:\n", "\\begin{equation}\n", "p(\\epsilon^{(i)})=\\frac{1}{\\sqrt{2\\pi\\sigma}} e^{-\\frac{ \\left( \\epsilon^{(i)}\\right)^2 }{2\\sigma ^2}}\n", "\\end{equation}\n", "\n", "Escribiendo, lo anterior en terminos de la probabilidad de obtener un valor de $y^{i}$ dado un $x^{i}$ parametrizado por $\\theta$ obtenemos que:\n", "\n", "\n", "\\begin{equation}\n", "p_i(y^{i}|x^{i};\\theta)=\\frac{1}{\\sqrt{2\\pi\\sigma}} e^{-\\frac{ \\left( y_i - \\Theta^T X^{(i)} \\right)^2 }{2\\sigma ^2}}\n", "\\end{equation}\n", "\n", "\n", "\n", "Si ausmimos independicia estadística de cada $\\epsilon^{(i)}$, la probabilidad $L(\\theta)$ asociada a toda la distribución de puntos viene dada por:\n", "\n", "\\begin{equation}\n", "\\cal{L}(\\theta) = p(\\vec{y}|X;\\theta)=\\prod_{i=1}^{n} p_i(y^{i}|x^{i};\\theta)\n", "\\end{equation}\n", "\n", "\n", "\n", "\\begin{equation}\n", "\\cal{L}(\\theta) =\\prod_{i=1}^{n} \\frac{1}{\\sqrt{2\\pi\\sigma}} e^{-\\frac{ \\left( y_i - \\Theta^T X^{(i)} \\right)^2 }{2\\sigma ^2}}\n", "\\end{equation}\n", "\n", "para tener la mejor estimación posible de los valores que se deben elegir de $\\theta$, se escogeran los parámetros que generan la mayor probabilidad de ocurrencia según las observaciones, es decir, aquellos valores para el cual $L(\\theta)$ es máximo, si aplicamos el logaritmo natural antes de máximar tenemos que:\n", "\n", "\\begin{equation}\n", "\\ln \\cal{L}(\\theta) = \\cal{l}(\\theta) = \\ln \\left[\\prod_{i=1}^{n} \\frac{1}{\\sqrt{2\\pi\\sigma}} e^{-\\frac{ \\left( y_i - \\Theta^T X^{(i)} \\right)^2 }{2\\sigma ^2}} \\right]\n", "\\end{equation}\n", "\n", "\n", "Después de un par de pasos se puede encontrar que:\n", "\n", "\\begin{equation}\n", "\\cal{l}(\\theta) = n\\ln \\frac{1}{\\sqrt{2\\pi\\sigma}} - \\frac{1}{2\\sigma^2} \\sum_{i=1}^{n} (y^{i}-\\Theta^T X^{i})^2\n", "\\end{equation},\n", "\n", "maximar $\\cal{l(\\theta)}$ equivale a encontrar donde $\\nabla_{\\theta} \\cal{l(\\theta)} = 0$. Lo anterior muestra por que la elección de minimos cuadrados puede ser una buena eleccción para el analisis de los datos." ], "metadata": { "id": "Jkue3DN2WxP6" } } ] }